Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 6–9
DOI: https://doi.org/10.17223/2226308X/11/1
(Mi pdma384)
 

Theoretical Foundations of Applied Discrete Mathematics

On mixing digraphs of nonlinear substitutions for binary shift registers

V. S. Grigorievab

a Financial University under the Government of the Russian Federation, Moscow
b "Positive Technologies", Moscow
References:
Abstract: In this paper, we research the class $R(n,m)$ of substitutions on $n$-dimensional vector space produced by the binary left-shift registers of the length $n$ with one feedback $f(x_1,\dots,x_n)=x_1\oplus\psi(x_2,\dots,x_n)$ essentially depending on $m$ variables, $3\le m\le n$. We have obtained the following double-ended estimate for the exponent of the mixing digraphs $\Gamma(g)$ for nonlinear substitutions $g\in R(n,m)$:
$$ n+\left\lceil\frac{n-1}{m-1}\right\rceil-1\le\exp{\Gamma(g)}\le\Delta(D)+n+\left\lfloor\frac{(n-2)^2}2\right\rfloor-1, $$
where $D(g)=\{i_1,\dots,i_m\}$ is the set of indexes of essential variables of the shift register feedback function $f$, $1=i_1<\dots<i_m\le n$, $m\le n$; $\Delta(D)=\max\{i_2-i_1,\dots,i_m-i_{m-1},n-i_m\}$. We have also obtained some upper-bound estimates for the sum and for the ratio of exponents of mixing digraphs of substitution $g\in R(n,m)$ and its inverse substitution $g^{-1}$:
\begin{gather*} \exp{\Gamma(g)}+\exp{\Gamma(g^{-1})}\le2\left(\Delta(D)+\left\lfloor\frac{n^2}m\right\rfloor\right)+i_m,\\ \frac{\exp{\Gamma(g)}}{\exp{\Gamma(g^{-1})}}\le\frac{\Delta(D)+n+\left\lfloor\frac{(n-2)^2}2\right\rfloor-1}{n+\left\lceil\frac{n-1}{m-1}\right\rceil-1}. \end{gather*}
Keywords: mixing digraph approach, primitive digraph, exponent of graph, shift register, Frobenius number.
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. S. Grigoriev, “On mixing digraphs of nonlinear substitutions for binary shift registers”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 6–9
Citation in format AMSBIB
\Bibitem{Gri18}
\by V.~S.~Grigoriev
\paper On mixing digraphs of nonlinear substitutions for binary shift registers
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 6--9
\mathnet{http://mi.mathnet.ru/pdma384}
\crossref{https://doi.org/10.17223/2226308X/11/1}
\elib{https://elibrary.ru/item.asp?id=35557584}
Linking options:
  • https://www.mathnet.ru/eng/pdma384
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p6
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :49
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024