Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 10–12
DOI: https://doi.org/10.17223/2226308X/11/2
(Mi pdma391)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

Weight properties of primitive matrices

S. N. Kyazhin

National Engineering Physics Institute "MEPhI", Moscow
Full-text PDF (541 kB) Citations (1)
References:
Abstract: For nonnegative $n\times n$ matrices ($n>2$), the results of researching the dependence of matrix primitivity on weight (quantity of positive elements) are presented, namely: 1) any matrix of a weight $k\le n$ is not primitive; 2) for $k=n+1,\dots,n^2-n+1$, there are both a not primitive matrix with weight $k$ and a primitive matrix with weight $k$ and exponent $\gamma $ where $n+2\lfloor\sqrt{2(n-1)}\rfloor\le\gamma+k\le n^2-n+3$; 3) any matrix with weight $k=n^2-n+2,\dots,n^2-1$ is primitive and its exponent $\gamma=2$. It is shown that, for some primitive matrices, the weight is not monotonically non-decreasing function of its degree.
Keywords: primitive matrix, exponent of matrix, weight of matrix.
Bibliographic databases:
Document Type: Article
UDC: 512.64
Language: Russian
Citation: S. N. Kyazhin, “Weight properties of primitive matrices”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 10–12
Citation in format AMSBIB
\Bibitem{Kya18}
\by S.~N.~Kyazhin
\paper Weight properties of primitive matrices
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 10--12
\mathnet{http://mi.mathnet.ru/pdma391}
\crossref{https://doi.org/10.17223/2226308X/11/2}
\elib{https://elibrary.ru/item.asp?id=35557585}
Linking options:
  • https://www.mathnet.ru/eng/pdma391
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p10
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024