|
This article is cited in 6 scientific papers (total in 6 papers)
Discrete Functions
On the invertibility of vector Boolean functions
I. A. Pankratova Tomsk State University, Tomsk
Abstract:
The class $\mathcal F_{n,m,k}$ of invertible vector Boolean functions $F\colon\mathbb F_2^n\to\mathbb F_2^m$ with coordinate functions depending on the given number $k$ variables is considered. It is proved that 1) these functions do not exist for any $n=m$ and $k=2$; 2) the functions of the class $\mathcal F_{n,n,n-1}$ can (can not) be built from affine coordinate functions for even (odd) $n$; 3) if $\mathcal F_{n,m,k}\neq\varnothing$ then $\mathcal F_{n+1,m+1,k}\neq\varnothing$.
Keywords:
vector Boolean functions, invertible function.
Citation:
I. A. Pankratova, “On the invertibility of vector Boolean functions”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 35–37
Linking options:
https://www.mathnet.ru/eng/pdma233 https://www.mathnet.ru/eng/pdma/y2015/i8/p35
|
Statistics & downloads: |
Abstract page: | 347 | Full-text PDF : | 126 | References: | 55 |
|