|
Discrete Functions
On self dual bent functions
A. V. Kutsenko Mechanics and Mathematics Department, Novosibirsk State University, Novosibirsk
Abstract:
Here, it is proved that a Boolean function $f$ in $n$ variables is self-dual bent if and only if the Hamming weight of the function $F_y(x)=f(x)\oplus f(y)\oplus x\cdot y$ is equal to $2^{n-1}-2^{n/2-1}$ for any $y\in\mathbb F_2^n$.
Keywords:
Boolean function, bent function, self-dual bent.
Citation:
A. V. Kutsenko, “On self dual bent functions”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 34–35
Linking options:
https://www.mathnet.ru/eng/pdma224 https://www.mathnet.ru/eng/pdma/y2015/i8/p34
|
Statistics & downloads: |
Abstract page: | 183 | Full-text PDF : | 98 | References: | 32 |
|