Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 43, Pages 70–77
DOI: https://doi.org/10.17223/20710410/43/5
(Mi pdm653)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical Backgrounds of Computer and Control System Reliability

On the arbitrarily reliable implementation of Boolean functions by non-branching programs with a conditional stop operator in bases with generalized conjunction

S. M. Grabovskayaa, M. A. Alekhinab

a Penza State University, Penza, Russia
b Penza State Technological University, Penza, Russia
Full-text PDF (597 kB) Citations (1)
References:
Abstract: The implementation of Boolean functions by non-branching programs with a conditional stop operator is considered in a complete finite basis containing a generalized conjunction, i.e. a function of the form $x_1^{\alpha_1}\& x_2^{\alpha_2}$ $(\alpha_1, \alpha_2 \in \{0, 1\})$. The computational operators are assumed to go into faulty states of an arbitrary type independently of each other with a probability not exceeding the value $N(B)$, i.e. unreliability of the most unreliable (“bad”) of the basic elements. In addition, conditional stop operators are also unreliable and independently of each other are prone to two types of faults: the first and second kind. The fault of the first kind is characterized by the fact that on admission to the stop-operator input unit this operator does not work with a probability $\delta \in (0, 1/2)$ and, therefore, the program work continues. The fault of the second kind is that on admission to the stop-operator input zero this operator works with probability $\eta \in (0, 1/2)$, and, hence, the program work stops. Denote $\mu=\max\{\delta, \eta\}$. To increase the reliability of source programs, we use the function $g(x_1, x_2, x_3, x_4)$ of the form $(x_1^{\sigma_1}x_2^{\sigma_2}\vee x_3^{\sigma_3}x_4^{\sigma_4})^{\sigma_5}$ $(\sigma_i \in \{0, 1\}, i \in \{1, 2, 3, 4, 5\})$ and the method of multiple duplication of circuits and programs. We prove that if the complete finite basis $B$ contains a function of the form $x_1^{\alpha_1}\& x_2^{\alpha_2}$ $(\alpha_1, \alpha_2 \in \{0, 1\})$, then any Boolean function $f$ can be implemented by a non-branching program with unreliability no more than $[0{,}84]^t\cdot 5{,}17\cdot N(B)$ for any natural $t$ with $N(B)\in (0, 1/960]$ and $\mu \in (0, 1/10]$. So, it is proved that an arbitrary Boolean function can be implemented with an arbitrarily reliable non-branching program.
Keywords: Boolean function, non-branching program, conditional stop operator, synthesis, reliability.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00451_а
Bibliographic databases:
Document Type: Article
UDC: 519.718
Language: Russian
Citation: S. M. Grabovskaya, M. A. Alekhina, “On the arbitrarily reliable implementation of Boolean functions by non-branching programs with a conditional stop operator in bases with generalized conjunction”, Prikl. Diskr. Mat., 2019, no. 43, 70–77
Citation in format AMSBIB
\Bibitem{GraAle19}
\by S.~M.~Grabovskaya, M.~A.~Alekhina
\paper On the arbitrarily reliable implementation of~Boolean~functions by non-branching programs with~a conditional stop operator in~bases~with~generalized conjunction
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 43
\pages 70--77
\mathnet{http://mi.mathnet.ru/pdm653}
\crossref{https://doi.org/10.17223/20710410/43/5}
\elib{https://elibrary.ru/item.asp?id=37279957}
Linking options:
  • https://www.mathnet.ru/eng/pdm653
  • https://www.mathnet.ru/eng/pdm/y2019/i1/p70
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024