Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 43, Pages 78–100
DOI: https://doi.org/10.17223/20710410/43/6
(Mi pdm654)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical Backgrounds of Computer and Control System Reliability

Synthesis of easily testable logic networks under arbitrary stuck-at faults at inputs and outputs of gates

K. A. Popkov

Keldysh Institute of Applied Mathematics, Moscow, Russia
Full-text PDF (782 kB) Citations (4)
References:
Abstract: Two binary vectors are called $k$-adjacent if they differ in at most $k$ components, where $k\in\mathbb{N}$. For $\alpha\in\{0,1\}$ and $s\in\mathbb{N}$, let $\alpha^s$ be the Boolean vector $(\alpha,\ldots,\alpha)$ with $s$ coordinates $\alpha$. For each natural $k$, consider the bases $B(k)=\{\varphi(x_1,\ldots,x_{2k+2}),x_1\ldots x_{k+1}\vee\overline x_1\ldots\overline x_{k+1},\overline x,0\}$ and $B'(k)=\{\varphi(x_1,\ldots,x_{2k+2}),\xi(x_1,\ldots,x_{3k+2}),\eta(x_1,\ldots,x_{4k+2}),\overline x,0\}$, where $\varphi(x_1,\ldots,x_{2k+2})$ is an arbitrary non-self-dual Boolean function taking the value $\alpha$ on the vector $\alpha^{2k+2}$ and the value $\overline\alpha$ on all other vectors $k$-adjacent to this vector; $\xi(x_1,\ldots,x_{3k+2})$ is an arbitrary Boolean function taking the value $\alpha$ on the vector $\alpha^{3k+2}$, the value $\overline\alpha$ on all other vectors $k$-adjacent to this vector, and the value $\alpha$ on all vectors $k$-adjacent to the vector $(\alpha^{k+1},\overline\alpha^{2k+1})$; $\eta(x_1,\ldots,x_{4k+2})$ is an arbitrary Boolean function taking the value $1$ on the vector $\alpha^{4k+2}$, the value $0$ on all other vectors $k$-adjacent to this vector, and the value $\alpha$ on all vectors $k$-adjacent to the vector $(\alpha_{2k+1},\overline\alpha^{2k+1})$. Let $D_{k\text{(I)}}(f)$ ($D_{k\text{(IO)}}(f)$, $D'_{k\text{(I)}}(f)$, $D'_{k\text{(IO)}}(f)$) be the least length of a fault detection test (fault detection test, diagnostic test, diagnostic test, respectively) for irredundant logic networks consisting of logic gates in the basis $B(k)$ (basis $B(k)$, basis $B'(k)$, basis $B'(k)$, respectively), implementing given Boolean function $f(x_1,\ldots,x_n)$, and having at most $k$ arbitrary stuck-at faults on inputs of gates (on inputs and/or outputs of gates, on inputs of gates, on inputs and/or outputs of gates, respectively). Let a Boolean function $f(x_1,\ldots,x_n)$ be called palindromic if it takes the same value on any two opposite binary $n$-tuples.
The following facts are obtained. The quantity $D_{k\text{(I)}}(f)$ equals $0$ iff $f$ is an identical function (i.e., $f\equiv x_i$ for some $i\in\{1,\ldots,n\}$) and equals $2$ otherwise. The quantity $D_{k\text{(IO)}}(f)$ equals $0$ iff $f$ is an identical function, equals $1$ iff $f\equiv 0$, equals $2$ iff $f$ is not an identical or palindromic function, equals $3$ iff $f$ is a palindromic function and $f\not\equiv 0,1$, and is undefined iff $f\equiv 1$. The quantity $D'_{k\text{(I)}}(f)$ equals $0$ iff $f$ is an identical function and equals $2$ otherwise. The quantity $D'_{1\text{(IO)}}(f)$ equals $0$ iff $f$ is an identical function, equals $1$ iff $f\equiv 0$, equals $2$ iff $f\equiv\overline x_i$ for some $i\in\{1,\ldots,n\}$, equals $3$ iff $f$ is not a self-dual function and $f\not\equiv 0,1$, equals $4$ iff $f$ is a self-dual function and $f\notin\{x_1,\ldots,x_n,\overline x_1,\ldots,\overline x_n\}$, and is undefined iff $f\equiv 1$. For each $k\in\mathbb N$, the equality $D'_{k\text{(IO)}}(f)=4$ holds true under $n\geqslant 3$, and in the case $k\geqslant 2$, the proportion of those Boolean functions $f$ in $n$ variables, for which $D'_{k\text{(IO)}}(f)=4$, tends to $1$ under $n\to\infty$.
Keywords: logic network, arbitrary stuck-at fault, fault detection test, diagnostic test.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00337_а
Bibliographic databases:
Document Type: Article
UDC: 519.718.7
Language: Russian
Citation: K. A. Popkov, “Synthesis of easily testable logic networks under arbitrary stuck-at faults at inputs and outputs of gates”, Prikl. Diskr. Mat., 2019, no. 43, 78–100
Citation in format AMSBIB
\Bibitem{Pop19}
\by K.~A.~Popkov
\paper Synthesis of easily testable logic networks under~arbitrary stuck-at faults at~inputs~and~outputs~of~gates
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 43
\pages 78--100
\mathnet{http://mi.mathnet.ru/pdm654}
\crossref{https://doi.org/10.17223/20710410/43/6}
\elib{https://elibrary.ru/item.asp?id=37279958}
Linking options:
  • https://www.mathnet.ru/eng/pdm654
  • https://www.mathnet.ru/eng/pdm/y2019/i1/p78
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024