Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 41, Pages 76–84
DOI: https://doi.org/10.17223/20710410/41/8
(Mi pdm636)
 

Applied Graph Theory

New families of multiplicative circulant networks

E. A. Monakhova

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia
References:
Abstract: For circulant networks, the problem of the maximal attainable number of nodes under given degree and diameter of their graphs is considered. A research of multiplicative circulant networks with generators in the form of $(1,t,t^2,\dots, t^{k-1})$ for odd $t\ge5$ is presented. On the base of this research, two new families of multiplicative circulant networks of orders $n=(t+1)(1+t+\ldots+t^{k-1})/2+t^{k-1}$ for odd dimensions $k\ge3$ and diameters $d\equiv0\bmod k$ and even dimensions $k\ge4$ and diameters $d\equiv0\bmod k$ and $d\equiv0\bmod k/2$ are constructed. The orders of these graphs are larger than orders of graphs of all known families of multiplicative circulant networks under the same dimensions and diameters.
Keywords: multiplicative circulant networks, diameter, maximum order of a graph.
Bibliographic databases:
Document Type: Article
UDC: 519.87
Language: Russian
Citation: E. A. Monakhova, “New families of multiplicative circulant networks”, Prikl. Diskr. Mat., 2018, no. 41, 76–84
Citation in format AMSBIB
\Bibitem{Mon18}
\by E.~A.~Monakhova
\paper New families of multiplicative circulant networks
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 41
\pages 76--84
\mathnet{http://mi.mathnet.ru/pdm636}
\crossref{https://doi.org/10.17223/20710410/41/8}
\elib{https://elibrary.ru/item.asp?id=35688731}
Linking options:
  • https://www.mathnet.ru/eng/pdm636
  • https://www.mathnet.ru/eng/pdm/y2018/i3/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :53
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024