Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 41, Pages 66–75
DOI: https://doi.org/10.17223/20710410/41/7
(Mi pdm635)
 

Applied Graph Theory

Structural properties of minimal primitive digraphs

P. V. Lebedev

Ltd "ASP Labs", Moscow, Russia
References:
Abstract: Let $\Gamma^P(n,m)$ be the set of all minimal primitive $n$-vertex digraphs with $m$ arcs. The purpose of the research is to describe the new classes of digraphs $\Gamma\in\Gamma^P(n,n+3)$ and their graph degree structures $D(\Gamma)$. This problem is important for the analysis of mixing properties of round transformations, e.g. symmetric iterative block ciphers. A matrix $M$ is said to be primitive if there is a power $M^e=\left(m_{i, j}^{(e)}\right)$ such that $m_{i, j}^{(e)}>0$ for all $i$ and $j$; the least power $e$ with this property is called an exponent of $M$. The conceptions of the primitiveness and exponent of the matrix $M$ expand to the digraph $\Gamma$ with the adjacency matrix $M$. The minimal primitive digraph is a digraph of which adjacency matrix loses its primitiveness property after replacing any positive element by zero. The main results of our research are the following: 1) for the minimal primitive digraph $\Gamma\in\Gamma^P(n,n+3)$, graph degree structures $D(\Gamma)$ are described via solutions of the equation $n_{1,2}+n_{2,1}+2n_{1,3}+2n_{2,2}+2n_{3,1}+3n_{1,4}+3n_{2,3}+3n_{3,2}+3n_{4,1}+\dots+(n-2)n_{n-1,1}= 6$ and represented in the table of $D(\Gamma)$ values; 2) it is proved that $D(\Gamma)$, for digraphs from the set $\Gamma^P(n,n+k)$, are determined and can be calculated by $D(\Gamma)$ for $\Gamma\in\Gamma^P(n-1,n+k-2)$; 3) it is proved that the number of classes of digraphs $\Gamma^P(n,n+k)$ could be estimated via solutions of the equation $n_{1,2}+n_{2,1}+2n_{1,3}+2n_{3,1}+3n_{1,4}+3n_{4,1}+4n_{1,5}+4n_{5,1}+\dots+kn_{1,k+1}+kn_{k+1,1}=2k$ and graph degree structures for $\Gamma\in\Gamma^P(n-1,n+k-2)$; 4) $N_3\leq34$ and $N_2\leq9$, where $N_i$ is the number of classes in $\Gamma^P(n,n+i)$.
Keywords: primitive matrix, primitive digraph, strongly connected digraph.
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: P. V. Lebedev, “Structural properties of minimal primitive digraphs”, Prikl. Diskr. Mat., 2018, no. 41, 66–75
Citation in format AMSBIB
\Bibitem{Leb18}
\by P.~V.~Lebedev
\paper Structural properties of minimal primitive digraphs
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 41
\pages 66--75
\mathnet{http://mi.mathnet.ru/pdm635}
\crossref{https://doi.org/10.17223/20710410/41/7}
\elib{https://elibrary.ru/item.asp?id=35688730}
Linking options:
  • https://www.mathnet.ru/eng/pdm635
  • https://www.mathnet.ru/eng/pdm/y2018/i3/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :40
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024