Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2011, supplement № 4, Pages 9–11 (Mi pdm302)  

Theoretical Foundations of Applied Discrete Mathematics

The number of bent functions on the minimal distance from a quadratic bent function

N. A. Kolomeeс

Novosibirsk State University, Novosibirsk
References:
Abstract: We are interested in how to construct bent functions by slight modifications of an initial one. The answer to this question is directly connected with the studying bent functions on the minimal Hamming distance from a given bent function. Here, we describe all bent functions on the minimal distance from a quadratic bent function and calculate exactly the number of them.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: N. A. Kolomeeс, “The number of bent functions on the minimal distance from a quadratic bent function”, Prikl. Diskr. Mat., 2011, supplement № 4, 9–11
Citation in format AMSBIB
\Bibitem{Kol11}
\by N.~A.~Kolomeeс
\paper The number of bent functions on the minimal distance from a~quadratic bent function
\jour Prikl. Diskr. Mat.
\yr 2011
\pages 9--11
\issueinfo supplement № 4
\mathnet{http://mi.mathnet.ru/pdm302}
Linking options:
  • https://www.mathnet.ru/eng/pdm302
  • https://www.mathnet.ru/eng/pdm/y2011/i13/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :70
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024