|
Prikladnaya Diskretnaya Matematika, 2011, supplement № 4, Pages 11–12
(Mi pdm300)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Theoretical Foundations of Applied Discrete Mathematics
Statistical independence of the Boolean function superposition
O. L. Kolcheva, I. A. Pankratova Tomsk State University, Tomsk
Abstract:
It is proved here that if a Boolean function $f(x,y)$ is statistically independent on the variables in $x$, then the same is true for any Boolean function $g(f(x,y),z)$, but this may not be so for a superposition $g(f_1(x,y),\dots,f_s(x,y),z)$ where $s\geq2$ and every function $f_1(x,y),\dots,f_s(x,y)$ is statistically independent on $x$.
Citation:
O. L. Kolcheva, I. A. Pankratova, “Statistical independence of the Boolean function superposition”, Prikl. Diskr. Mat., 2011, supplement № 4, 11–12
Linking options:
https://www.mathnet.ru/eng/pdm300 https://www.mathnet.ru/eng/pdm/y2011/i13/p11
|
|