Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2018, Volume 7(25), Issue 1, Pages 104–115
DOI: https://doi.org/10.15393/j3.art.2018.4370
(Mi pa229)
 

This article is cited in 10 scientific papers (total in 10 papers)

An improper integral, the beta function, the Wallis ratio, and the Catalan numbers

Qi Fengabc

a Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin, 300387, China
b College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, 028043, China
c Institute of Mathematics, Henan Polytechnic University, Jiaozuo, Henan, 454010, China
References:
Abstract: In the paper we present closed and unified expressions for a sequence of improper integrals in terms of the beta function and the Wallis ratio. Hereafter, we derive integral representations for the Catalan numbers originating from combinatorics.
Keywords: improper integral; closed expression; unified expression; beta function; Wallis ratio; integral representation; Catalan number.
Received: 22.01.2018
Revised: 28.04.2018
Accepted: 30.04.2018
Bibliographic databases:
Document Type: Article
UDC: 519.58
MSC: Primary 11B65; Secondary 11B75, 11B83, 26A39, 26A42, 33B15
Language: English
Citation: Qi Feng, “An improper integral, the beta function, the Wallis ratio, and the Catalan numbers”, Probl. Anal. Issues Anal., 7(25):1 (2018), 104–115
Citation in format AMSBIB
\Bibitem{Qi18}
\by Qi~Feng
\paper An improper integral, the beta function, the Wallis ratio, and the Catalan numbers
\jour Probl. Anal. Issues Anal.
\yr 2018
\vol 7(25)
\issue 1
\pages 104--115
\mathnet{http://mi.mathnet.ru/pa229}
\crossref{https://doi.org/10.15393/j3.art.2018.4370}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437686400007}
\elib{https://elibrary.ru/item.asp?id=36509656}
Linking options:
  • https://www.mathnet.ru/eng/pa229
  • https://www.mathnet.ru/eng/pa/v25/i1/p104
  • This publication is cited in the following 10 articles:
    1. Wathek Chammam, Mongia Khlifi, “Several formulas and identities related to the Pochhammer k-symbol and application to a case of the Fuss–Catalan–Qi numbers”, Indian J Pure Appl Math, 2024  crossref
    2. Hüseyi̇n Irmak, Tolga Han Açikgöz, “Notes on Various Transforms Identified by Some Special Functions with Complex (or Real) Parameters and Some of Related Implications”, Engineering World, 5 (2023), 108  crossref
    3. Wen-Hui Li, Omran Kouba, Issam Kaddoura, Feng Qi, “A further generalization of the Catalan numbers and its explicit formula and integral representation”, Filomat, 37:19 (2023), 6505  crossref
    4. S{\i}lay Aytaç YÜKÇÜ, “The Numerical Evaluation Methods for Beta Function”, Süleyman Demirel üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 17:2 (2022), 288  crossref
    5. Ravi Prakash Agarwal, Erdal Karapinar, Marko Kostić, Jian Cao, Wei-Shih Du, “A Brief Overview and Survey of the Scientific Work by Feng Qi”, Axioms, 11:8 (2022), 385  crossref
    6. Vito Lampret, “How is the period of a simple pendulum growing with increasing amplitude?”, Mathematica Slovaca, 71:2 (2021), 359  crossref
    7. Feng Qi, Xiao-Ting Shi, Pietro Cerone, “A Unified Generalization of the Catalan, Fuss, and Fuss—Catalan Numbers”, MCA, 24:2 (2019), 49  crossref
    8. Feng Qi, Pshtiwan Othman Mohammed, Jen-Chih Yao, Yong-Hong Yao, “Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)-convex functions”, J Inequal Appl, 2019:1 (2019)  crossref
    9. Wathek Chammam, “Several formulas and identities related to Catalan-Qi and q-Catalan-Qi numbers”, Indian J Pure Appl Math, 50:4 (2019), 1039  crossref
    10. Feng Qi, Pietro Cerone, “Some Properties of the Fuss–Catalan Numbers”, Mathematics, 6:12 (2018), 277  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:429
    Full-text PDF :77
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025