Loading [MathJax]/jax/output/SVG/config.js
Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2018, Volume 7(25), Issue 1, Pages 87–103
DOI: https://doi.org/10.15393/j3.art.2018.4730
(Mi pa226)
 

This article is cited in 10 scientific papers (total in 10 papers)

Coefficient problems on the class $U(\lambda)$

Saminathan Ponnusamya, Karl-Joachim Wirthsb

a Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India
b Institut für Analysis und Algebra, TU Braunschweig, 38106 Braunschweig, Germany
References:
Abstract: For $0<\lambda \leq 1$, let ${\mathcal U}(\lambda)$ denote the family of functions $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ analytic in the unit disk $\mathbb{D}$ satisfying the condition $\left |\left (\frac{z}{f(z)}\right )^{2}f'(z)-1\right |<\lambda $ in $\mathbb{D}$. Although functions in this family are known to be univalent in $\mathbb{D}$, the coefficient conjecture about $a_n$ for $n\geq 5$ remains an open problem. In this article, we shall first present a non-sharp bound for $|a_n|$. Some members of the family ${\mathcal U}(\lambda)$ are given by
$$ \frac{z}{f(z)}=1-(1+\lambda)\phi(z) + \lambda (\phi(z))^2 $$
with $\phi(z)=e^{i\theta}z$, that solve many extremal problems in ${\mathcal U}(\lambda)$. Secondly, we shall consider the following question: Do there exist functions $\phi$ analytic in $\mathbb{D}$ with $|\phi (z)|<1$ that are not of the form $\phi(z)=e^{i\theta}z$ for which the corresponding functions $f$ of the above form are members of the family ${\mathcal U}(\lambda)$? Finally, we shall solve the second coefficient ($a_2$) problem in an explicit form for $f\in {\mathcal U}(\lambda)$ of the form
$$f(z) =\frac{z}{1-a_2z+\lambda z\int\limits_0^z\omega(t)\,dt}, $$
where $\omega$ is analytic in $\mathbb{D}$ such that $|\omega(z)|\leq 1$ and $\omega(0)=a$, where $a\in \overline{\mathbb{D}}$.
Keywords: Univalent function; subordination; Julia's lemma; Schwarz' lemma.
Received: 26.12.2017
Revised: 10.03.2018
Accepted: 12.03.2018
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30C45
Language: English
Citation: Saminathan Ponnusamy, Karl-Joachim Wirths, “Coefficient problems on the class $U(\lambda)$”, Probl. Anal. Issues Anal., 7(25):1 (2018), 87–103
Citation in format AMSBIB
\Bibitem{PonWir18}
\by Saminathan~Ponnusamy, Karl-Joachim~Wirths
\paper Coefficient problems on the class $U(\lambda)$
\jour Probl. Anal. Issues Anal.
\yr 2018
\vol 7(25)
\issue 1
\pages 87--103
\mathnet{http://mi.mathnet.ru/pa226}
\crossref{https://doi.org/10.15393/j3.art.2018.4730}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437686400006}
\elib{https://elibrary.ru/item.asp?id=36509653}
Linking options:
  • https://www.mathnet.ru/eng/pa226
  • https://www.mathnet.ru/eng/pa/v25/i1/p87
  • This publication is cited in the following 10 articles:
    1. Sidra Zafar, Abbas Kareem Wanas, Mohamed Abdalla, Syed Zakar Hussain Bukhari, “Norm Estimates of the Pre-Schwarzian Derivatives for Functions with Conic-like Domains”, Mathematics, 11:11 (2023), 2490  crossref
    2. Navneet Lal Sharma, “On integral means for starlike and spiral-like functions”, J Anal, 31:4 (2023), 2409  crossref
    3. Liulan Li, Saminathan Ponnusamy, Karl Joachim Wirths, “Relations of the Class $\mathcal {U}(\lambda )$ to Other Families of Functions”, Bull. Malays. Math. Sci. Soc., 45:3 (2022), 955  crossref
    4. Bappaditya Bhowmik, Firdoshi Parveen, “On Estimates of Some Coefficient Functionals for Certain Meromorphic Univalent Functions”, Bull. Malays. Math. Sci. Soc., 45:5 (2022), 2745  crossref
    5. See Keong Lee, Saminathan Ponnusamy, Karl-Joachim Wirths, “On Classes of Meromorphic Locally Univalent Functions Defined by Differential Inequalities”, Bull. Iran. Math. Soc., 46:1 (2020), 149  crossref
    6. Rosihan M. Ali, Milutin Obradović, Saminathan Ponnusamy, “Differential Inequalities and Univalent Functions”, Lobachevskii J Math, 40:9 (2019), 1242  crossref
    7. Bappaditya Bhowmik, Firdoshi Parveen, “On Some Results for a Subclass of Meromorphic Univalent Functions with Nonzero Pole”, Results Math, 74:4 (2019)  crossref
    8. Ramachandran Balasubramanian, Saminathan Ponnusamy, Karl-Joachim Wirths, “Inequalities for weighted sums of Mertens functions”, Arch. Math., 113:3 (2019), 273  crossref
    9. Bappaditya Bhowmik, Firdoshi Parveen, “On the Taylor Coefficients of a Subclass of Meromorphic Univalent Functions”, Bull. Malays. Math. Sci. Soc., 42:2 (2019), 793  crossref
    10. Saminathan Ponnusamy, Navneet Lal Sharma, Karl-Joachim Wirths, “Logarithmic Coefficients of the Inverse of Univalent Functions”, Results Math, 73:4 (2018)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :91
    References:42
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025