|
Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2011, Issue 18, Pages 61–69
(Mi pa18)
|
|
|
|
О хаусдорфовой мере однородного треугольного $(c,\theta)$-ковра Серпинского
N. Yu. Svetova Petrozavodsk State University, Faculty of Mathematics
Abstract:
The generalized homogeneous Sierpinski $(c,\theta)$-gasket is considered. It has received that the $s$-dimensional Hausdorff measure of $(c, \theta)$-gasket for $c\in (0; 1/3]$ is equal $H^{s}(D_{c,\theta})=(2\sin\frac{\theta}{2})^{s}$, for $\theta\in [\frac{\pi}{3}, \pi)$ and $(\frac{2\sin \theta}{\sqrt{5-4\cos \theta}})^{s}\le H^{s}(D_{c-\theta}) \le 1$ for $\theta\in (0,\frac{\pi}{3})$. As a consequence the $s$-dimensional Hausdorff measure for a generalized homogeneous Pascal triangle is received, it is equal $2^{s/2}$.
Citation:
N. Yu. Svetova, “О хаусдорфовой мере однородного треугольного $(c,\theta)$-ковра Серпинского”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2011, no. 18, 61–69
Linking options:
https://www.mathnet.ru/eng/pa18 https://www.mathnet.ru/eng/pa/y2011/i18/p61
|
Statistics & downloads: |
Abstract page: | 118 | Full-text PDF : | 54 | References: | 30 |
|