|
Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2011, Issue 18, Pages 21–60
(Mi pa17)
|
|
|
|
Инвариантные подпространства в функциональных пространствах медленного роста на световом конусе в $R^{3}$
S. S. Platonov Petrozavodsk State University, Faculty of Mathematics
Abstract:
We describe the structure of closed linear subspaces in tempered topological vector function spaces on the light cone $X$ in $R^{3}$ that are invariant with respect to the natural quasiregular representation of the group $R\oplus SO_{0}(1,2)$. In particular, we obtain a description of the irreducible and indecomposable invariant subspaces. The class of function spaces under consideration include, in particular, the space $S'(X)$ of all tempered distributions on $X$.
Citation:
S. S. Platonov, “Инвариантные подпространства в функциональных пространствах медленного роста на световом конусе в $R^{3}$”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2011, no. 18, 21–60
Linking options:
https://www.mathnet.ru/eng/pa17 https://www.mathnet.ru/eng/pa/y2011/i18/p21
|
Statistics & downloads: |
Abstract page: | 130 | Full-text PDF : | 70 | References: | 27 |
|