Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 1996, Issue 3, Pages 118–137 (Mi pa143)  

О классах Никольского — Бесова на компактных симметрических пространствах ранга 1

S. S. Platonov
Abstract: Let $M$ be a compact symmetric space of rank 1. We have defined the Nikolskii— Besov type function classes $B^{r}_{p,\theta}(M)$ and we have obtained a conctructive description of this classes in in terms of the best approximation by the spherical polynomials on $M$.
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: S. S. Platonov, “О классах Никольского — Бесова на компактных симметрических пространствах ранга 1”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1996, no. 3, 118–137
Citation in format AMSBIB
\Bibitem{Pla96}
\by S.~S.~Platonov
\paper О классах Никольского --- Бесова на компактных симметрических пространствах ранга 1
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 1996
\issue 3
\pages 118--137
\mathnet{http://mi.mathnet.ru/pa143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1635207}
\zmath{https://zbmath.org/?q=an:1042.46018}
Linking options:
  • https://www.mathnet.ru/eng/pa143
  • https://www.mathnet.ru/eng/pa/y1996/i3/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024