Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 1996, Issue 3, Pages 97–117 (Mi pa142)  

О спектральном синтезе в одном топологическом векторном пространстве целых функций

S. S. Platonov
Abstract: Let $\mathcal{F}$ be the set of all entire functions $f(z), z=x+iy$, such that $\mathrm{sup}_{|y|\le l}|f(x+iy)|,(1+x^{2})^{-k}<\infty$ for all $l>0$. $\mathcal{F}$ is a locally convex space with respect to certain topology. It is proved that every closed invariant under derivation linear subspace $\mathcal{H}\subseteq \mathcal{F}$ is the closed span of the functions $z^{k}e^{i\lambda z}, \lambda\in C, k\in N\cup \{\infty \}$. A set $\wedge=\{\lambda \in C:e^{i\lambda z}\in \mathcal{H}\}$ is called the spectrum of $\mathcal{H}$, and we suppose that $\lambda$ contains in $\wedge$ with the multiplicity $r(\lambda)$, where $r(\lambda)=\mathrm{inf}\{k\in N\cup \{\infty \}:z^{k}e^{i\lambda z}\notin \mathcal{H}$. The complete description of various spectrums of such subspaces $\mathcal{H}$ is obtained.
Bibliographic databases:
Document Type: Article
UDC: 517.547
Language: Russian
Citation: S. S. Platonov, “О спектральном синтезе в одном топологическом векторном пространстве целых функций”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1996, no. 3, 97–117
Citation in format AMSBIB
\Bibitem{Pla96}
\by S.~S.~Platonov
\paper О спектральном синтезе в одном топологическом векторном пространстве целых функций
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 1996
\issue 3
\pages 97--117
\mathnet{http://mi.mathnet.ru/pa142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1635203}
\zmath{https://zbmath.org/?q=an:0893.46018}
Linking options:
  • https://www.mathnet.ru/eng/pa142
  • https://www.mathnet.ru/eng/pa/y1996/i3/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024