Abstract:
The influence of the laser frequency drift on the operation of phase-sensitive optical time domain reflectometry (φ-OTDR) systems is considered. Theoretical results based on a new numerical φ-OTDR model demonstrating the influence of the laser frequency instability on a signal are reported. This model is verified based on experimental data. It has been used to calculate the signal-to-noise ratio (SNR) of the system for different parameters of the laser source stability. As a result, quantitative requirements for lasers used in φ-OTDR systems are formulated.
Keywords:
phase-sensitive optical time domain reflectometer, laser frequency fluctuation, narrow-band laser, distributed sensor.
A theoretical and experimental study of the stability of a laser source was performed by A.A. Zhirnov and K.V. Stepanov and funded by the Russian Foundation for Basic Research, project no. 18-32-00688. A.K. Fedorov was funded by the Russian Foundation for Basic Research, project no. 18-37-20033.
Citation:
A. A. Zhirnov, K. V. Stepanov, A. O. Chernutsky, A. K. Fedorov, E. T. Nesterov, C. Svelto, A. B. Pnev, V. E. Karasik, “Influence of the laser frequency drift in phase-sensitive optical time domain reflectometry”, Optics and Spectroscopy, 127:4 (2019), 603–610; Optics and Spectroscopy, 127:4 (2019), 656–663
\Bibitem{ZhiSteChe19}
\by A.~A.~Zhirnov, K.~V.~Stepanov, A.~O.~Chernutsky, A.~K.~Fedorov, E.~T.~Nesterov, C.~Svelto, A.~B.~Pnev, V.~E.~Karasik
\paper Influence of the laser frequency drift in phase-sensitive optical time domain reflectometry
\jour Optics and Spectroscopy
\yr 2019
\vol 127
\issue 4
\pages 603--610
\mathnet{http://mi.mathnet.ru/os581}
\crossref{https://doi.org/10.21883/OS.2019.10.48364.177-19}
\elib{https://elibrary.ru/item.asp?id=41848277}
\transl
\jour Optics and Spectroscopy
\yr 2019
\vol 127
\issue 4
\pages 656--663
\crossref{https://doi.org/10.1134/S0030400X1910031X}
Linking options:
https://www.mathnet.ru/eng/os581
https://www.mathnet.ru/eng/os/v127/i4/p603
This publication is cited in the following 12 articles:
Jérôme Azzola, Emmanuel Gaucher, “Seismic Monitoring of a Deep Geothermal Field in Munich (Germany) Using Borehole Distributed Acoustic Sensing”, Sensors, 24:10 (2024), 3061
Minzhe Hu, Zefeng Li, “DASPy: A Python Toolbox for DAS Seismology”, Seismological Research Letters, 2024
Jérôme Azzola, Katja Thiemann, Emmanuel Gaucher, “Integration of distributed acoustic sensing for real-time seismic monitoring of a geothermal field”, Geotherm Energy, 11:1 (2023)
Xingye Bai, Fudong Zhang, Jun Lin, Tianxiong Li, Haozhuang Liu, “Phase drift and noise suppression method based on SEE-SGMD-PCC in a distributed acoustic sensor”, Opt. Express, 31:19 (2023), 31463
T.V. Choban, A. A. Zhirnov, K.V. Stepanov, R.I. Khan, A.B. Pnev, C. Svelto, A.I. Lopunov, O.V. Butov, 2022 International Conference Laser Optics (ICLO), 2022, 1
Quantum Electron., 51:2 (2021), 175–183
T. V. Choban, A. A. Zhirnov, K. V. Stepanov, K. I. Koshelev, A. O. Chernutsky, A. B. Pnev, V. E. Karasik, 2021 Photonics & Electromagnetics Research Symposium (PIERS), 2021, 2922
Konstantin V. Stepanov, Andrey A. Zhirnov, Kirill I. Koshelev, Anton O. Chernutsky, Roman I. Khan, Alexey B. Pnev, “Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils”, Sensors, 21:21 (2021), 7077
Quantum Electron., 50:9 (2020), 882–887
Konstantin V. Stepanov, Andrey A. Zhirnov, Anton O. Chernutsky, Kirill I. Koshelev, Alexey B. Pnev, Alexey I. Lopunov, Oleg V. Butov, “The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings”, Sensors, 20:22 (2020), 6431