Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2011, Volume 7, Number 1, Pages 119–138 (Mi nd211)  

This article is cited in 4 scientific papers (total in 4 papers)

Stability of new relative equilibria of the system of three point vortices in a circular domain

A. V. Borisova, I. S. Mamaeva, A. V. Vas'kinab

a Institute of Computer Science
b Udmurt State University
Full-text PDF (893 kB) Citations (4)
References:
Abstract: This paper presents a topological approach to the search and stability analysis of relative equilibria of three point vortices of equal intensities. It is shown that the equations of motion can be reduced by one degree of freedom. We have found two new stationary configurations (isosceles and non-symmetrical collinear) and studied their bifurcations and stability.
Keywords: point vortex; reduction; bifurcational diagram; relative equilibriums; stability; periodic solutions.
Received: 22.11.2010
Revised: 02.03.2011
Bibliographic databases:
Document Type: Article
UDC: 532.527, 532.5.013
MSC: 76M23, 34A05
Language: Russian
Citation: A. V. Borisov, I. S. Mamaev, A. V. Vas'kina, “Stability of new relative equilibria of the system of three point vortices in a circular domain”, Nelin. Dinam., 7:1 (2011), 119–138
Citation in format AMSBIB
\Bibitem{BorMamVas11}
\by A.~V.~Borisov, I.~S.~Mamaev, A.~V.~Vas'kina
\paper Stability of new relative equilibria of the system of three point vortices in a circular domain
\jour Nelin. Dinam.
\yr 2011
\vol 7
\issue 1
\pages 119--138
\mathnet{http://mi.mathnet.ru/nd211}
\elib{https://elibrary.ru/item.asp?id=15648772}
Linking options:
  • https://www.mathnet.ru/eng/nd211
  • https://www.mathnet.ru/eng/nd/v7/i1/p119
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024