Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2011, Volume 7, Number 1, Pages 101–117 (Mi nd210)  

This article is cited in 4 scientific papers (total in 4 papers)

Statistical irreversibility of the Kac reversible circular model

V. V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (419 kB) Citations (4)
References:
Abstract: The Kac circular model is a discrete dynamical system which has the property of recurrence and reversibility. Within the framework of this model M. Kac formulated necessary conditions for irreversibility over “short” time intervals to take place and demonstrated Boltzmann's most important exploration methods and ideas, outlining their advantages and limitations. We study the circular model within the realm of the theory of Gibbs ensembles and offer a new approach to a rigorous proof of the “zeroth” law of thermodynamics basing on the analysis of weak convergence of probability distributions.
Keywords: reversibility; stochastic equilibrium; weak convergence.
Received: 29.10.2010
Revised: 04.12.2010
Bibliographic databases:
Document Type: Article
UDC: 531
MSC: 37A60
Language: Russian
Citation: V. V. Kozlov, “Statistical irreversibility of the Kac reversible circular model”, Nelin. Dinam., 7:1 (2011), 101–117
Citation in format AMSBIB
\Bibitem{Koz11}
\by V.~V.~Kozlov
\paper Statistical irreversibility of the Kac reversible circular model
\jour Nelin. Dinam.
\yr 2011
\vol 7
\issue 1
\pages 101--117
\mathnet{http://mi.mathnet.ru/nd210}
\elib{https://elibrary.ru/item.asp?id=15648771}
Linking options:
  • https://www.mathnet.ru/eng/nd210
  • https://www.mathnet.ru/eng/nd/v7/i1/p101
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024