Abstract:
For a wide class of functional spaces we obtain a necessary and sufficient condition on a space that guarantees a Hardy–Littlewood type of assertion about whether the sum of a cosine series with monotonic coefficients belongs to a functional space, e.g., Lp (p>1). As examples we consider Lorentz spaces, Marcinkiewicz spaces, Orlicz spaces, and Lp spaces.
Citation:
V. A. Rodin, “The Hardy-Littlewood theorem for the cosine series in a symmetric space”, Mat. Zametki, 20:2 (1976), 241–246; Math. Notes, 20:2 (1976), 693–696
\Bibitem{Rod76}
\by V.~A.~Rodin
\paper The Hardy-Littlewood theorem for the cosine series in a symmetric space
\jour Mat. Zametki
\yr 1976
\vol 20
\issue 2
\pages 241--246
\mathnet{http://mi.mathnet.ru/mzm9986}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=427931}
\zmath{https://zbmath.org/?q=an:0338.42010}
\transl
\jour Math. Notes
\yr 1976
\vol 20
\issue 2
\pages 693--696
\crossref{https://doi.org/10.1007/BF01155876}
Linking options:
https://www.mathnet.ru/eng/mzm9986
https://www.mathnet.ru/eng/mzm/v20/i2/p241
This publication is cited in the following 8 articles:
G. A. Akishev, “O tochnosti neravenstva raznykh metrik dlya trigonometricheskikh polinomov v obobschennom prostranstve Lorentsa”, Tr. IMM UrO RAN, 25, no. 2, 2019, 9–20
G. A. Akishev, “Neravenstvo raznykh metrik v obobschennom prostranstve Lorentsa”, Tr. IMM UrO RAN, 24, no. 4, 2018, 5–18
A. U. Bimendina, E. S. Smailov, “Fourier–Price coefficients of class GM and best approximations of functions in the Lorentz space Lpθ[0,1), 1<p<+∞, 1<θ<+∞”, Proc. Steklov Inst. Math., 293 (2016), 77–98
M. I. Dyachenko, E. D. Nursultanov, “Hardy-Littlewood theorem for trigonometric series with α-monotone coefficients”, Sb. Math., 200:11 (2009), 1617–1631
Volosivets S.S., “On Hardy and Bellman Transforms of Series with Respect to Multiplicative Systems in Symmetric Spaces”, Anal. Math., 35:2 (2009), 131–148
E. D. Nursultanov, “Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space”, Proc. Steklov Inst. Math., 255 (2006), 185–202
E. D. Nursultanov, “On the coefficients of multiple Fourier series in Lp-spaces”, Izv. Math., 64:1 (2000), 93–120
O. Ya. Berchiyan, “On Hardy and Bellman transforms of the Fourier coefficients of functions in symmetric spaces”, Math. Notes, 53:4 (1993), 361–366