Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 20, Issue 2, Pages 241–246 (Mi mzm9986)  

This article is cited in 8 scientific papers (total in 8 papers)

The Hardy-Littlewood theorem for the cosine series in a symmetric space

V. A. Rodin

Voronezh State Pedagogical Institute
Full-text PDF (514 kB) Citations (8)
Abstract: For a wide class of functional spaces we obtain a necessary and sufficient condition on a space that guarantees a Hardy–Littlewood type of assertion about whether the sum of a cosine series with monotonic coefficients belongs to a functional space, e.g., Lp (p>1). As examples we consider Lorentz spaces, Marcinkiewicz spaces, Orlicz spaces, and Lp spaces.
Received: 18.10.1974
English version:
Mathematical Notes, 1976, Volume 20, Issue 2, Pages 693–696
DOI: https://doi.org/10.1007/BF01155876
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. A. Rodin, “The Hardy-Littlewood theorem for the cosine series in a symmetric space”, Mat. Zametki, 20:2 (1976), 241–246; Math. Notes, 20:2 (1976), 693–696
Citation in format AMSBIB
\Bibitem{Rod76}
\by V.~A.~Rodin
\paper The Hardy-Littlewood theorem for the cosine series in a symmetric space
\jour Mat. Zametki
\yr 1976
\vol 20
\issue 2
\pages 241--246
\mathnet{http://mi.mathnet.ru/mzm9986}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=427931}
\zmath{https://zbmath.org/?q=an:0338.42010}
\transl
\jour Math. Notes
\yr 1976
\vol 20
\issue 2
\pages 693--696
\crossref{https://doi.org/10.1007/BF01155876}
Linking options:
  • https://www.mathnet.ru/eng/mzm9986
  • https://www.mathnet.ru/eng/mzm/v20/i2/p241
  • This publication is cited in the following 8 articles:
    1. G. A. Akishev, “O tochnosti neravenstva raznykh metrik dlya trigonometricheskikh polinomov v obobschennom prostranstve Lorentsa”, Tr. IMM UrO RAN, 25, no. 2, 2019, 9–20  mathnet  crossref  elib
    2. G. A. Akishev, “Neravenstvo raznykh metrik v obobschennom prostranstve Lorentsa”, Tr. IMM UrO RAN, 24, no. 4, 2018, 5–18  mathnet  crossref  elib
    3. A. U. Bimendina, E. S. Smailov, “Fourier–Price coefficients of class GM and best approximations of functions in the Lorentz space Lpθ[0,1), 1<p<+, 1<θ<+”, Proc. Steklov Inst. Math., 293 (2016), 77–98  mathnet  crossref  crossref  mathscinet  isi  elib
    4. M. I. Dyachenko, E. D. Nursultanov, “Hardy-Littlewood theorem for trigonometric series with α-monotone coefficients”, Sb. Math., 200:11 (2009), 1617–1631  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Volosivets S.S., “On Hardy and Bellman Transforms of Series with Respect to Multiplicative Systems in Symmetric Spaces”, Anal. Math., 35:2 (2009), 131–148  crossref  isi
    6. E. D. Nursultanov, “Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space”, Proc. Steklov Inst. Math., 255 (2006), 185–202  mathnet  crossref  mathscinet
    7. E. D. Nursultanov, “On the coefficients of multiple Fourier series in Lp-spaces”, Izv. Math., 64:1 (2000), 93–120  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. O. Ya. Berchiyan, “On Hardy and Bellman transforms of the Fourier coefficients of functions in symmetric spaces”, Math. Notes, 53:4 (1993), 361–366  mathnet  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :100
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025