Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 20, Issue 2, Pages 241–246 (Mi mzm9986)  

This article is cited in 8 scientific papers (total in 8 papers)

The Hardy-Littlewood theorem for the cosine series in a symmetric space

V. A. Rodin

Voronezh State Pedagogical Institute
Full-text PDF (514 kB) Citations (8)
Abstract: For a wide class of functional spaces we obtain a necessary and sufficient condition on a space that guarantees a Hardy–Littlewood type of assertion about whether the sum of a cosine series with monotonic coefficients belongs to a functional space, e.g., $L_p$ ($p>1$). As examples we consider Lorentz spaces, Marcinkiewicz spaces, Orlicz spaces, and $L_p$ spaces.
Received: 18.10.1974
English version:
Mathematical Notes, 1976, Volume 20, Issue 2, Pages 693–696
DOI: https://doi.org/10.1007/BF01155876
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. A. Rodin, “The Hardy-Littlewood theorem for the cosine series in a symmetric space”, Mat. Zametki, 20:2 (1976), 241–246; Math. Notes, 20:2 (1976), 693–696
Citation in format AMSBIB
\Bibitem{Rod76}
\by V.~A.~Rodin
\paper The Hardy-Littlewood theorem for the cosine series in a symmetric space
\jour Mat. Zametki
\yr 1976
\vol 20
\issue 2
\pages 241--246
\mathnet{http://mi.mathnet.ru/mzm9986}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=427931}
\zmath{https://zbmath.org/?q=an:0338.42010}
\transl
\jour Math. Notes
\yr 1976
\vol 20
\issue 2
\pages 693--696
\crossref{https://doi.org/10.1007/BF01155876}
Linking options:
  • https://www.mathnet.ru/eng/mzm9986
  • https://www.mathnet.ru/eng/mzm/v20/i2/p241
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :92
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024