|
Estimates of linear combinations of near-exponential functions with positive and negative exponents
S. F. Prokoptsev Moscow Energy Institute
Abstract:
The functions
\begin{gather*} f_n(z)=e^{{\lambda_n}z}[1+\alpha_n(z)],\\ \varphi_n(z)=e^{{\mu_n}z}[1+\beta_n(z)]\qquad(n=1,2,\dots),
\end{gather*}
are considered, where $\lambda_n$ and $\mu_n$ are, respectively, the positive and negative zeros of some entire function of special type, while the functions $\alpha_n(z)$ and $\beta_n(z)$ are small in some sense. Estimates of a linear combination $P_1(z)$ of the functions $f_n(z)$ in the left half-plane, and of a linear combination $P_2(z)$ of functions $\varphi_n(z)$ in the right half-plane, are obtained in terms of the maximum modulus of $P_1(z)+P_2(z)$ in a segment of the imaginary axis.
Received: 01.07.1975
Citation:
S. F. Prokoptsev, “Estimates of linear combinations of near-exponential functions with positive and negative exponents”, Mat. Zametki, 20:2 (1976), 227–240; Math. Notes, 20:2 (1976), 685–692
Linking options:
https://www.mathnet.ru/eng/mzm9985 https://www.mathnet.ru/eng/mzm/v20/i2/p227
|
Statistics & downloads: |
Abstract page: | 131 | Full-text PDF : | 54 | First page: | 1 |
|