|
The absolute convergence of orthogonal series
A. S. Zinov'ev Khar'kov Aviation Institute
Abstract:
We obtain sufficient conditions for the absolute convergence of Fourier series for functions of $\mathrm{L}^2_{\mathrm{d}\psi}$ depending on the properties of the function being expanded and the rate of growth of the sums $\sum_{k=1}^n\varphi_k^2(x)$ of the system of functions $\{\varphi_k(\mathrm{t})\}$ orthonormalized in $[a,\mathrm{ b}]$ with respect to $\mathrm{d}\psi(\mathrm{t})$. We show that if at some point $x\in[a,\mathrm{b}]$ the function $\psi(\mathrm{t})$ has a discontinuity, at that point the Fourier series of any function $f(\mathrm{t})\in \mathrm{L}_{\mathrm{d}\psi}^2$, converges absolutely.
Received: 31.01.1972
Citation:
A. S. Zinov'ev, “The absolute convergence of orthogonal series”, Mat. Zametki, 12:5 (1972), 511–516; Math. Notes, 12:5 (1972), 743–746
Linking options:
https://www.mathnet.ru/eng/mzm9910 https://www.mathnet.ru/eng/mzm/v12/i5/p511
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 50 | First page: | 1 |
|