Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1972, Volume 12, Issue 5, Pages 501–510 (Mi mzm9909)  

This article is cited in 4 scientific papers (total in 4 papers)

The exact order of approximation of functions by Bernstein polynomials in a Hausdorff metric

V. M. Veselinov

M. V. Lomonosov Moscow State University
Full-text PDF (796 kB) Citations (4)
Abstract: We investigate the approximation of functions by Bernstein polynomials. We prove that
$$ r_{[0,1]}(f, B_n(f))\leqslant\mu_f\left(4\sqrt{\frac{\ln n}{n}}\right)+O\left(\sqrt{\frac{\ln n}{n}}\right),\eqno{(1)} $$
where $r_{[0,1]}(f, B_n(f))$ is the Hausdorff distance between the functions $f(x)$ and $B_n(f; x)$ in $[0,1]$,
$$ \mu_f(\delta)=\frac12\sup_{\substack{|x_1-x_2|\leqslant\delta\\ x_1,x_2\in\Delta}}\{\sup_{x_1\leqslant x\leqslant x_2}[|f(x_1)-f(x)|+|f(x_2)-f(x)|]-|f(x_1)-f(x_2)|\} $$
is the modulus of nonmonotonicity of $f(x)$. The bound (1) is of better order than that obtained by Sendov. We show that the order of (1) cannot be improved.
Received: 06.04.1972
English version:
Mathematical Notes, 1972, Volume 12, Issue 5, Pages 737–742
DOI: https://doi.org/10.1007/BF01099055
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. M. Veselinov, “The exact order of approximation of functions by Bernstein polynomials in a Hausdorff metric”, Mat. Zametki, 12:5 (1972), 501–510; Math. Notes, 12:5 (1972), 737–742
Citation in format AMSBIB
\Bibitem{Ves72}
\by V.~M.~Veselinov
\paper The exact order of approximation of functions by Bernstein polynomials in a Hausdorff metric
\jour Mat. Zametki
\yr 1972
\vol 12
\issue 5
\pages 501--510
\mathnet{http://mi.mathnet.ru/mzm9909}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=320592}
\zmath{https://zbmath.org/?q=an:0252.41003}
\transl
\jour Math. Notes
\yr 1972
\vol 12
\issue 5
\pages 737--742
\crossref{https://doi.org/10.1007/BF01099055}
Linking options:
  • https://www.mathnet.ru/eng/mzm9909
  • https://www.mathnet.ru/eng/mzm/v12/i5/p501
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024