Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2000, Volume 68, Issue 5, Pages 692–698
DOI: https://doi.org/10.4213/mzm990
(Mi mzm990)
 

This article is cited in 2 scientific papers (total in 2 papers)

Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity

S. Yu. Orevkov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (241 kB) Citations (2)
References:
Abstract: Dehornoy constructed a right invariant order on the braid group $B_n$ uniquely defined by the condition $\beta_0\sigma_i\beta_1>1$, if $\beta_0,\beta_1$ are words in $\sigma_{i+1}^{\pm 1},\dots,\sigma_{n-1}^{\pm 1}$. A braid is called strongly positive if $\alpha\beta\alpha^{-1}>1$ for any $\alpha\in B_n$. In the present paper it is proved that the braid $\beta_0(\sigma_1\sigma_2\dots\sigma_{n-1})(\sigma_{n-1}\sigma_{n-2}\dots\sigma_1)$ is strongly positive if the word $\beta_0$ does not contain $\sigma_1^{\pm 1}$. We also provide a geometric proof of the result by Burckel and Laver that the standard generators of a braid group are strongly positive. Finally, we discuss relations between the right invariant order and quasipositivity.
Received: 30.12.1998
English version:
Mathematical Notes, 2000, Volume 68, Issue 5, Pages 588–593
DOI: https://doi.org/10.1023/A:1026667407199
Bibliographic databases:
Document Type: Article
UDC: 515
Language: Russian
Citation: S. Yu. Orevkov, “Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity”, Mat. Zametki, 68:5 (2000), 692–698; Math. Notes, 68:5 (2000), 588–593
Citation in format AMSBIB
\Bibitem{Ore00}
\by S.~Yu.~Orevkov
\paper Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 5
\pages 692--698
\mathnet{http://mi.mathnet.ru/mzm990}
\crossref{https://doi.org/10.4213/mzm990}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1835451}
\zmath{https://zbmath.org/?q=an:0995.20021}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 5
\pages 588--593
\crossref{https://doi.org/10.1023/A:1026667407199}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166684000006}
Linking options:
  • https://www.mathnet.ru/eng/mzm990
  • https://doi.org/10.4213/mzm990
  • https://www.mathnet.ru/eng/mzm/v68/i5/p692
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :157
    References:32
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024