Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2000, Volume 68, Issue 5, Pages 699–709
DOI: https://doi.org/10.4213/mzm991
(Mi mzm991)
 

This article is cited in 1 scientific paper (total in 1 paper)

General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations

K. V. Rerikh

Joint Institute for Nuclear Research
Full-text PDF (244 kB) Citations (1)
References:
Abstract: A general approach is developed for integrating an invertible dynamical system defined by the composition of two involutions, i.e., a nonlinear one which is a standard Cremona transformation, and a linear one. By the Noether theorem, the integration of these systems is the foundation for integrating a broad class of Cremona dynamical systems. We obtain a functional equation for invariant homogeneous polynomials and sufficient conditions for the algebraic integrability of the systems under consideration. It is proved that Siegel's linearization theorem is applicable if the eigenvalues of the map at a fixed point are algebraic numbers.
Received: 16.02.1994
Revised: 27.03.2000
English version:
Mathematical Notes, 2000, Volume 68, Issue 5, Pages 594–601
DOI: https://doi.org/10.1023/A:1026619524037
Bibliographic databases:
UDC: 519
Language: Russian
Citation: K. V. Rerikh, “General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations”, Mat. Zametki, 68:5 (2000), 699–709; Math. Notes, 68:5 (2000), 594–601
Citation in format AMSBIB
\Bibitem{Rer00}
\by K.~V.~Rerikh
\paper General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 5
\pages 699--709
\mathnet{http://mi.mathnet.ru/mzm991}
\crossref{https://doi.org/10.4213/mzm991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1835452}
\zmath{https://zbmath.org/?q=an:1060.14508}
\elib{https://elibrary.ru/item.asp?id=13947548}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 5
\pages 594--601
\crossref{https://doi.org/10.1023/A:1026619524037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166684000007}
Linking options:
  • https://www.mathnet.ru/eng/mzm991
  • https://doi.org/10.4213/mzm991
  • https://www.mathnet.ru/eng/mzm/v68/i5/p699
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024