|
This article is cited in 19 scientific papers (total in 19 papers)
Approximation Properties of Poisson Integrals for the Classes $C^{\psi}_{\beta}H^{\alpha}$
Yu. I. Kharkevich, T. A. Stepanyuk Volyn University of Lesya Ukrainka
Abstract:
Questions dealing with the approximation of functions from the classes $C^{\psi}_{\beta}H^{\alpha}$ by Poisson integrals are studied. The Kolmogorov–Nikolskii problem for Poisson integrals for the classes $C^{\psi}_{\beta}H^{\alpha}$ is solved in the uniform metric.
Keywords:
approximation of functions, the classes $C^{\psi}_{\beta}H^{\alpha}$, Poisson integral, Fourier series, Kolmogorov–Nikolskii problem, $(\psi,\beta)$-derivative.
Received: 27.04.2012 Revised: 27.11.2013
Citation:
Yu. I. Kharkevich, T. A. Stepanyuk, “Approximation Properties of Poisson Integrals for the Classes $C^{\psi}_{\beta}H^{\alpha}$”, Mat. Zametki, 96:6 (2014), 939–952; Math. Notes, 96:6 (2014), 1008–1019
Linking options:
https://www.mathnet.ru/eng/mzm9681https://doi.org/10.4213/mzm9681 https://www.mathnet.ru/eng/mzm/v96/i6/p939
|
Statistics & downloads: |
Abstract page: | 431 | Full-text PDF : | 123 | References: | 51 | First page: | 22 |
|