Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 6, Pages 926–938
DOI: https://doi.org/10.4213/mzm10283
(Mi mzm10283)
 

This article is cited in 2 scientific papers (total in 2 papers)

Wavelet Expansions on the Cantor Group

Yu. A. Farkovab

a Russian State Geological Prospecting University, Moscow
b Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Moscow
Full-text PDF (530 kB) Citations (2)
References:
Abstract: The wavelet expansions in $L^p$-spaces on a locally compact Cantor group $G$ are studied. An order-sharp estimate of the wavelet approximation of an arbitrary function $f\in L^p(G)$ for $1\leqslant p<\infty$, in terms of the modulus of continuity of this function is obtained, and a Jackson–Bernstein type theorem on the approximation by wavelets of functions from the class $\operatorname{Lip}^{(p)}(\alpha;G)$ is proved.
Keywords: wavelet expansion, Cantor group, $L^p$-space, Jackson–Bernstein type theorem, the class $\operatorname{Lip}^{(p)}(\alpha;G)$, modulus of continuity, Walsh polynomial, Fourier transform.
Received: 28.03.2013
Revised: 17.10.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 6, Pages 996–1007
DOI: https://doi.org/10.1134/S000143461411039X
Bibliographic databases:
Document Type: Article
UDC: 517.986.62
Language: Russian
Citation: Yu. A. Farkov, “Wavelet Expansions on the Cantor Group”, Mat. Zametki, 96:6 (2014), 926–938; Math. Notes, 96:6 (2014), 996–1007
Citation in format AMSBIB
\Bibitem{Far14}
\by Yu.~A.~Farkov
\paper Wavelet Expansions on the Cantor Group
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 926--938
\mathnet{http://mi.mathnet.ru/mzm10283}
\crossref{https://doi.org/10.4213/mzm10283}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343663}
\zmath{https://zbmath.org/?q=an:1315.42023}
\elib{https://elibrary.ru/item.asp?id=22834458}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 996--1007
\crossref{https://doi.org/10.1134/S000143461411039X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700039}
\elib{https://elibrary.ru/item.asp?id=24022747}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919897431}
Linking options:
  • https://www.mathnet.ru/eng/mzm10283
  • https://doi.org/10.4213/mzm10283
  • https://www.mathnet.ru/eng/mzm/v96/i6/p926
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :171
    References:77
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024