Abstract:
It is proved that the linear function gn(x1,…,xn)=x1+⋯+xnmod2 is realized in the class of Π-circuits with complexity Lπ(gn)⩾. Combination of this result with S. V. Yablonskii's upper bound yields L_\pi(g_n)\genfrac{}{}{0pt}{}{\smile}{\frown} n^2.
Citation:
V. M. Khrapchenko, “Complexity of the realization of a linear function in the class of \Pi-circuits”, Mat. Zametki, 9:1 (1971), 35–40; Math. Notes, 9:1 (1971), 21–23
\Bibitem{Khr71}
\by V.~M.~Khrapchenko
\paper Complexity of the realization of a linear function in the class of $\Pi$-circuits
\jour Mat. Zametki
\yr 1971
\vol 9
\issue 1
\pages 35--40
\mathnet{http://mi.mathnet.ru/mzm9639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=290872}
\zmath{https://zbmath.org/?q=an:0222.94044|0206.29004}
\transl
\jour Math. Notes
\yr 1971
\vol 9
\issue 1
\pages 21--23
\crossref{https://doi.org/10.1007/BF01405045}
Linking options:
https://www.mathnet.ru/eng/mzm9639
https://www.mathnet.ru/eng/mzm/v9/i1/p35
This publication is cited in the following 49 articles:
N. P. Redkin, “O minimalnoi realizatsii operatora sovpadeniya bulevykh naborov”, Diskret. matem., 37:1 (2025), 52–75
K. L. Rychkov, “O stroenii odnogo klassa sovershennykh $\Pi$-razbienii”, Sib. elektron. matem. izv., 20:2 (2023), 1499–1518
K. L. Rychkov, “Predstavleniya normalizovannykh formul”, Diskretn. analiz i issled. oper., 29:4 (2022), 77–103
S. B. Gashkov, I. S. Sergeev, “O znachenii rabot V. M. Khrapchenko”, PDM, 2020, no. 48, 109–124
K. L. Rychkov, “O sovershennosti minimalnykh pravilnykh razbienii mnozhestva reber $n$-mernogo kuba”, Diskretn. analiz i issled. oper., 26:4 (2019), 74–107
K. L. Rychkov, “Complexity of the realization of a linear Boolean function in the class of $\pi$-schemes”, J. Appl. Industr. Math., 12:3 (2018), 540–576
Benjamin Rossman, “The Average Sensitivity of Bounded-Depth Formulas”, comput. complex., 27:2 (2018), 209
K. L. Rychkov, “Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating”, J. Appl. Industr. Math., 9:4 (2015), 580–587
Kenya UENO, “Candidate Boolean Functions towards Super-Quadratic Formula Size”, IEICE Trans. Inf. & Syst., E98.D:3 (2015), 524
Kenya UENO, “Exploring the Limits of Subadditive Approaches: Parallels between Optimization and Complexity Theory”, IIS, 21:4 (2015), 329
K. L. Rychkov, “O nizhnikh otsenkakh formulnoi slozhnosti lineinoi bulevoi funktsii”, Sib. elektron. matem. izv., 11 (2014), 165–184
Yu. L. Vasil'ev, K. L. Rychkov, “A lower bound on formula size of a ternary linear function”, J. Appl. Industr. Math., 7:4 (2013), 588–596
V. M. Khrapchenko, “A simplified proof of a lower complexity estimate”, Discrete Math. Appl., 23:2 (2013), 171–174
KENYA UENO, “BREAKING THE RECTANGLE BOUND BARRIER AGAINST FORMULA SIZE LOWER BOUNDS”, Int. J. Found. Comput. Sci., 24:08 (2013), 1339
S. V. Avgustinovich, Yu. L. Vasil'ev, K. L. Rychkov, “The computation complexity in the class of formulas”, J. Appl. Industr. Math., 6:4 (2012), 403–409
A. D. Korshunov, “Computational complexity of Boolean functions”, Russian Math. Surveys, 67:1 (2012), 93–165
A. P. Davydow, S. I. Nikolenko, “Circuit complexity of linear functions: gate elimination and feeble security”, J. Math. Sci. (N. Y.), 188:1 (2013), 35–46
Kenya Ueno, Lecture Notes in Computer Science, 7434, Computing and Combinatorics, 2012, 433
Kenya Ueno, “A stronger LP bound for formula size lower bounds via clique constraints”, Theoretical Computer Science, 434 (2012), 87
Andrew M. Childs, Shelby Kimmel, Robin Kothari, Lecture Notes in Computer Science, 7501, Algorithms – ESA 2012, 2012, 337