Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 3, Pages 362–383
DOI: https://doi.org/10.4213/mzm9224
(Mi mzm9224)
 

This article is cited in 11 scientific papers (total in 11 papers)

Some Problems of Approximation Theory in the Spaces LpLp on the Line with Power Weight

Iong Ping Lia, Chun Mei Sua, V. I. Ivanovb

a Beijing Normal University
b Tula State University
References:
Abstract: In the spaces LpLp on the line with power weight, we study approximation of functions by entire functions of exponential type. Using the Dunkl difference-differential operator and the Dunkl transform, we define the generalized shift operator, the modulus of smoothness, and the KK-functional. We prove a direct and an inverse theorem of Jackson–Stechkin type and of Bernstein type. We establish the equivalence between the modulus of smoothness and the KK-functional.
Keywords: Dunkl difference-differential operator, entire function, Dunkl transform, generalized shift operator, modulus of smoothness, the spaces LpLp, Jackson–Stechkin theorem.
Received: 23.03.2011
Revised: 04.06.2011
English version:
Mathematical Notes, 2011, Volume 90, Issue 3, Pages 344–364
DOI: https://doi.org/10.1134/S0001434611090045
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: Iong Ping Li, Chun Mei Su, V. I. Ivanov, “Some Problems of Approximation Theory in the Spaces LpLp on the Line with Power Weight”, Mat. Zametki, 90:3 (2011), 362–383; Math. Notes, 90:3 (2011), 344–364
Citation in format AMSBIB
\Bibitem{LiuChuIva11}
\by Iong Ping Li, Chun Mei Su, V.~I.~Ivanov
\paper Some Problems of Approximation Theory in the Spaces~$L_p$ on the Line with Power Weight
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 3
\pages 362--383
\mathnet{http://mi.mathnet.ru/mzm9224}
\crossref{https://doi.org/10.4213/mzm9224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868366}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 3
\pages 344--364
\crossref{https://doi.org/10.1134/S0001434611090045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296476500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155149517}
Linking options:
  • https://www.mathnet.ru/eng/mzm9224
  • https://doi.org/10.4213/mzm9224
  • https://www.mathnet.ru/eng/mzm/v90/i3/p362
  • This publication is cited in the following 11 articles:
    1. Othman Tyr, “Bernstein's inequalities and Jackson's inverse theorems in the Laguerre hypergroup”, Anal.Math.Phys., 14:2 (2024)  crossref
    2. O. L. Vinogradov, “Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers”, Sb. Math., 214:1 (2023), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. O. Tyr, R. Daher, “A note of some approximation theorems of functions on the Laguerre hypergroup”, Filomat, 37:6 (2023), 1959  crossref
    4. Daher R., Tyr O., “Modulus of Smoothness and Theorems Concerning Approximation in the Space l-Q,Alpha(2)(R-Q) With Power Weight”, Mediterr. J. Math., 18:2 (2021), 69  crossref  mathscinet  isi  scopus
    5. Negzaoui S., Oukili S., “Modulus of Continuity and Modulus of Smoothness Related to the Deformed Hankel Transform”, Results Math., 76:3 (2021), 164  crossref  mathscinet  isi
    6. Gorbachev D.V. Ivanov V.I. Tikhonov S.Yu., “Positive l-P-Bounded Dunkl-Type Generalized Translation Operator and Its Applications”, Constr. Approx., 49:3 (2019), 555–605  crossref  mathscinet  isi
    7. D. V. Gorbachev, N. N. Dobrovolskii, “Konstanty Nikolskogo v prostranstvakh $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$”, Chebyshevskii sb., 19:2 (2018), 67–79  mathnet  crossref  elib
    8. Daher R., El Ouadih S., “On the Approximation By Entire Functions of Exponential Type in l (P,Alpha) (R)”, J. Pseudo-Differ. Oper. Appl., 8:2 (2017), 341–347  crossref  mathscinet  zmath  isi  scopus
    9. S. S. Platonov, “Fourier–Jacobi harmonic analysis and approximation of functions”, Izv. Math., 78:1 (2014), 106–153  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. Veprintsev R.A., “Nekotorye voprosy garmonicheskogo analiza Danklya na sfere i share”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2013, no. 3, 6–26  elib
    11. Ivanov V.I., Lyu Yunpin, Smirnov O.I., “O nekotorykh klassakh tselykh funktsii eksponentsialnogo tipa v prostranstvakh $L_p(\mathbb{R}^d)$ so stepennym vesom”, Izvestiya Tulskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki, 2011, no. 2, 70–80  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:861
    Full-text PDF :262
    References:97
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025