Abstract:
A parametric family of operators $G_\rho$ is constructed for the class of convolutions $\mathbf{W}_{p,m}(K)$ whose kernel $K$ was generated by the moment sequence. We obtain a formula for evaluating
$$
E(\mathbf{W}_{p,m}(K);G_\rho)_p:=\sup_{f\in\mathbf{W}_{p,m}(K)}\|f-G_\rho(f)\|_p.
$$
For the case in which $\mathbf{W}_{p,m}(K)=\mathbf{W}^{r,\beta}_{p,m}$, we obtain an expansion in powers of the parameter $\varepsilon=-\ln\rho$ for $E(\mathbf{W}^{r,\beta}_{p,m};G_{\rho,r})_p$, where $\beta\in\mathbb{Z}$, $r>0$, and $m\in\mathbb{N}$, while $p=1$ or $p=\infty$.
Keywords:
convolution, linear operator, periodic measurable function, moment sequence, Borel measure, Fourier series, Euler polynomial, Bernoulli numbers.
Citation:
V. P. Zastavnyi, V. V. Savchuk, “Approximation of Classes of Convolutions by Linear Operators of Special Form”, Mat. Zametki, 90:3 (2011), 351–361; Math. Notes, 90:3 (2011), 333–343
\Bibitem{ZasSav11}
\by V.~P.~Zastavnyi, V.~V.~Savchuk
\paper Approximation of Classes of Convolutions by Linear Operators of Special Form
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 3
\pages 351--361
\mathnet{http://mi.mathnet.ru/mzm8545}
\crossref{https://doi.org/10.4213/mzm8545}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868365}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 3
\pages 333--343
\crossref{https://doi.org/10.1134/S0001434611090033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296476500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155149514}
Linking options:
https://www.mathnet.ru/eng/mzm8545
https://doi.org/10.4213/mzm8545
https://www.mathnet.ru/eng/mzm/v90/i3/p351
This publication is cited in the following 4 articles:
R. M. Trigub, “Asymptotics of approximation of continuous periodic functions by linear means of their Fourier series”, Izv. Math., 84:3 (2020), 608–624
Prestin J., Savchuk V., Shidlich A., “Approximation Theorems For Multivariate Taylor-Abel-Poisson Means”, Stud. Univ. Babes-Bolyai Math., 64:3 (2019), 313–329
Prestin J., Savchuk V.V., Shidlich A.L., “Direct and Inverse Theorems on the Approximation of 2 Pi-Periodic Functions By Taylor-Abel-Poisson Operators”, Ukr. Math. J., 69:5 (2017), 766–781
O. L. Vinogradov, “Sharp estimates of best approximations by deviations of Weierstrass-type integrals”, J. Math. Sci. (N. Y.), 194:6 (2013), 628–638