Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 3, Pages 351–361
DOI: https://doi.org/10.4213/mzm8545
(Mi mzm8545)
 

This article is cited in 4 scientific papers (total in 4 papers)

Approximation of Classes of Convolutions by Linear Operators of Special Form

V. P. Zastavnyia, V. V. Savchukb

a Donetsk National University
b Institute of Mathematics, Ukrainian National Academy of Sciences
Full-text PDF (542 kB) Citations (4)
References:
Abstract: A parametric family of operators $G_\rho$ is constructed for the class of convolutions $\mathbf{W}_{p,m}(K)$ whose kernel $K$ was generated by the moment sequence. We obtain a formula for evaluating
$$ E(\mathbf{W}_{p,m}(K);G_\rho)_p:=\sup_{f\in\mathbf{W}_{p,m}(K)}\|f-G_\rho(f)\|_p. $$
For the case in which $\mathbf{W}_{p,m}(K)=\mathbf{W}^{r,\beta}_{p,m}$, we obtain an expansion in powers of the parameter $\varepsilon=-\ln\rho$ for $E(\mathbf{W}^{r,\beta}_{p,m};G_{\rho,r})_p$, where $\beta\in\mathbb{Z}$, $r>0$, and $m\in\mathbb{N}$, while $p=1$ or $p=\infty$.
Keywords: convolution, linear operator, periodic measurable function, moment sequence, Borel measure, Fourier series, Euler polynomial, Bernoulli numbers.
Received: 02.11.2009
Revised: 16.03.2011
English version:
Mathematical Notes, 2011, Volume 90, Issue 3, Pages 333–343
DOI: https://doi.org/10.1134/S0001434611090033
Bibliographic databases:
Document Type: Article
UDC: 517.518.83+517.15
Language: Russian
Citation: V. P. Zastavnyi, V. V. Savchuk, “Approximation of Classes of Convolutions by Linear Operators of Special Form”, Mat. Zametki, 90:3 (2011), 351–361; Math. Notes, 90:3 (2011), 333–343
Citation in format AMSBIB
\Bibitem{ZasSav11}
\by V.~P.~Zastavnyi, V.~V.~Savchuk
\paper Approximation of Classes of Convolutions by Linear Operators of Special Form
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 3
\pages 351--361
\mathnet{http://mi.mathnet.ru/mzm8545}
\crossref{https://doi.org/10.4213/mzm8545}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868365}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 3
\pages 333--343
\crossref{https://doi.org/10.1134/S0001434611090033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296476500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155149514}
Linking options:
  • https://www.mathnet.ru/eng/mzm8545
  • https://doi.org/10.4213/mzm8545
  • https://www.mathnet.ru/eng/mzm/v90/i3/p351
  • This publication is cited in the following 4 articles:
    1. R. M. Trigub, “Asymptotics of approximation of continuous periodic functions by linear means of their Fourier series”, Izv. Math., 84:3 (2020), 608–624  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Prestin J., Savchuk V., Shidlich A., “Approximation Theorems For Multivariate Taylor-Abel-Poisson Means”, Stud. Univ. Babes-Bolyai Math., 64:3 (2019), 313–329  crossref  mathscinet  isi
    3. Prestin J., Savchuk V.V., Shidlich A.L., “Direct and Inverse Theorems on the Approximation of 2 Pi-Periodic Functions By Taylor-Abel-Poisson Operators”, Ukr. Math. J., 69:5 (2017), 766–781  crossref  mathscinet  isi  scopus
    4. O. L. Vinogradov, “Sharp estimates of best approximations by deviations of Weierstrass-type integrals”, J. Math. Sci. (N. Y.), 194:6 (2013), 628–638  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:750
    Full-text PDF :278
    References:96
    First page:33
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025