Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 5, Pages 662–669
DOI: https://doi.org/10.4213/mzm9027
(Mi mzm9027)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the Samarskii–Andreev Conjugation Conditions in the Theory of Elastic Beams

Yu. A. Bogan

M. A. Lavrent'ev Institute of Hydrodynamics
Full-text PDF (385 kB) Citations (5)
References:
Abstract: It is proved that the conjugation conditions for elastic beams in the case of a nonideal joint are limiting in the construction of asymptotics for the conjugation problem for two thin elastic bodies if the boundary between the bodies is filled by slightly extendible material.
Keywords: elastic beam, nonideal joint, conjugation problem, tangential stress, tangential displacemrnt, Young modulus.
Received: 15.11.2010
English version:
Mathematical Notes, 2012, Volume 92, Issue 5, Pages 606–611
DOI: https://doi.org/10.1134/S0001434612110028
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: Yu. A. Bogan, “On the Samarskii–Andreev Conjugation Conditions in the Theory of Elastic Beams”, Mat. Zametki, 92:5 (2012), 662–669; Math. Notes, 92:5 (2012), 606–611
Citation in format AMSBIB
\Bibitem{Bog12}
\by Yu.~A.~Bogan
\paper On the Samarskii--Andreev Conjugation Conditions in the Theory of Elastic Beams
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 5
\pages 662--669
\mathnet{http://mi.mathnet.ru/mzm9027}
\crossref{https://doi.org/10.4213/mzm9027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201468}
\zmath{https://zbmath.org/?q=an:06153791}
\elib{https://elibrary.ru/item.asp?id=20731623}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 5
\pages 606--611
\crossref{https://doi.org/10.1134/S0001434612110028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314263900002}
\elib{https://elibrary.ru/item.asp?id=20484132}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871826714}
Linking options:
  • https://www.mathnet.ru/eng/mzm9027
  • https://doi.org/10.4213/mzm9027
  • https://www.mathnet.ru/eng/mzm/v92/i5/p662
  • This publication is cited in the following 5 articles:
    1. N. A. Nikolaeva, “Zadacha o ravnovesii uprugogo tela s treschinoi i tonkimi vklyucheniyami, kotorye sopryazheny mezhdu soboi”, Dalnevost. matem. zhurn., 24:1 (2024), 73–95  mathnet  crossref
    2. Khludnev A., “T-Shape Inclusion in Elastic Body With a Damage Parameter”, J. Comput. Appl. Math., 393 (2021), 113540  crossref  mathscinet  isi
    3. A. M. Khludnev, T. S. Popova, “The junction problem for two weakly curved inclusions in an elastic body”, Siberian Math. J., 61:4 (2020), 743–754  mathnet  crossref  crossref  isi  elib
    4. Khludnev A., Popova T., “Equilibrium Problem For Elastic Body With Delaminated T-Shape Inclusion”, J. Comput. Appl. Math., 376 (2020), 112870  crossref  mathscinet  isi
    5. Neustroeva N.V., Petrovich L.N., “Junction Problem For Euler-Bernoulli and Timoshenko Elastic Beams”, Sib. Electron. Math. Rep., 13 (2016), 26–37  mathnet  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :195
    References:76
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025