Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 5, Pages 643–661
DOI: https://doi.org/10.4213/mzm8963
(Mi mzm8963)
 

This article is cited in 26 scientific papers (total in 26 papers)

Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations

A. G. Baskakov, N. S. Kaluzhina

Voronezh State University
References:
Abstract: The results of the paper are obtained for functions from homogeneous spaces of functions defined on a locally compact Abelian group. The notion of the Beurling spectrum, or essential spectrum, of functions is introduced. If a continuous unitary character is an essential point of the spectrum of a function, then it is the $\mathrm{c}$-limit of a linear combination of shifts of the function in question. The notion of a slowly varying function at infinity is introduced, and the properties of such functions are considered. For a parabolic equation with initial function from a homogeneous space, it is proved that the weak solution as a function of the first argument is a slowly varying function at infinity.
Keywords: Beurling spectrum of a function, locally compact Abelian group, parabolic equation, continuous unitary character, Banach space, Fourier transform, Banach module, directed set, Stepanov set.
Received: 28.10.2010
Revised: 08.06.2011
English version:
Mathematical Notes, 2012, Volume 92, Issue 5, Pages 587–605
DOI: https://doi.org/10.1134/S0001434612110016
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. G. Baskakov, N. S. Kaluzhina, “Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Mat. Zametki, 92:5 (2012), 643–661; Math. Notes, 92:5 (2012), 587–605
Citation in format AMSBIB
\Bibitem{BasKal12}
\by A.~G.~Baskakov, N.~S.~Kaluzhina
\paper Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 5
\pages 643--661
\mathnet{http://mi.mathnet.ru/mzm8963}
\crossref{https://doi.org/10.4213/mzm8963}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201473}
\zmath{https://zbmath.org/?q=an:1264.43008}
\elib{https://elibrary.ru/item.asp?id=20731622}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 5
\pages 587--605
\crossref{https://doi.org/10.1134/S0001434612110016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314263900001}
\elib{https://elibrary.ru/item.asp?id=20484479}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871837032}
Linking options:
  • https://www.mathnet.ru/eng/mzm8963
  • https://doi.org/10.4213/mzm8963
  • https://www.mathnet.ru/eng/mzm/v92/i5/p643
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024