Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 5, Pages 643–661
DOI: https://doi.org/10.4213/mzm8963
(Mi mzm8963)
 

This article is cited in 26 scientific papers (total in 26 papers)

Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations

A. G. Baskakov, N. S. Kaluzhina

Voronezh State University
References:
Abstract: The results of the paper are obtained for functions from homogeneous spaces of functions defined on a locally compact Abelian group. The notion of the Beurling spectrum, or essential spectrum, of functions is introduced. If a continuous unitary character is an essential point of the spectrum of a function, then it is the c-limit of a linear combination of shifts of the function in question. The notion of a slowly varying function at infinity is introduced, and the properties of such functions are considered. For a parabolic equation with initial function from a homogeneous space, it is proved that the weak solution as a function of the first argument is a slowly varying function at infinity.
Keywords: Beurling spectrum of a function, locally compact Abelian group, parabolic equation, continuous unitary character, Banach space, Fourier transform, Banach module, directed set, Stepanov set.
Received: 28.10.2010
Revised: 08.06.2011
English version:
Mathematical Notes, 2012, Volume 92, Issue 5, Pages 587–605
DOI: https://doi.org/10.1134/S0001434612110016
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. G. Baskakov, N. S. Kaluzhina, “Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Mat. Zametki, 92:5 (2012), 643–661; Math. Notes, 92:5 (2012), 587–605
Citation in format AMSBIB
\Bibitem{BasKal12}
\by A.~G.~Baskakov, N.~S.~Kaluzhina
\paper Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 5
\pages 643--661
\mathnet{http://mi.mathnet.ru/mzm8963}
\crossref{https://doi.org/10.4213/mzm8963}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201473}
\zmath{https://zbmath.org/?q=an:1264.43008}
\elib{https://elibrary.ru/item.asp?id=20731622}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 5
\pages 587--605
\crossref{https://doi.org/10.1134/S0001434612110016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314263900001}
\elib{https://elibrary.ru/item.asp?id=20484479}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871837032}
Linking options:
  • https://www.mathnet.ru/eng/mzm8963
  • https://doi.org/10.4213/mzm8963
  • https://www.mathnet.ru/eng/mzm/v92/i5/p643
  • This publication is cited in the following 26 articles:
    1. I. A. Vysotskaya, “Solutions of Difference Equations Almost Periodic at Infinity”, J Math Sci, 263:5 (2022), 635  crossref
    2. I. A. Vysotskaya, I. I. Strukova, “Issledovanie nekotorykh klassov pochti periodicheskikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:1 (2021), 4–14  mathnet  crossref
    3. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients”, Eurasian Math. J., 11:4 (2020), 8–24  mathnet  crossref
    4. A. G. Baskakov, E. E. Dikarev, “Spectral theory of functions in studying partial differential operators”, Ufa Math. J., 11:1 (2019), 3–18  mathnet  crossref  isi
    5. V. E. Strukov, I. I. Strukova, “Garmonicheskii analiz medlenno menyayuschikhsya na beskonechnosti polugrupp operatorov”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:2 (2019), 152–163  mathnet  crossref  elib
    6. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity”, Sb. Math., 210:10 (2019), 1380–1427  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. I. A. Vysotskaya, “Pochti periodicheskie na beskonechnosti resheniya raznostnykh uravnenii”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 38–46  mathnet  crossref  elib
    8. A. Baskakov. V. Obukhovskii, P. Zecca, “Almost periodic solutions at infinity of differential equations and inclusions”, J. Math. Anal. Appl., 462:1 (2018), 747–763  crossref  mathscinet  zmath  isi  scopus
    9. A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242  mathnet  crossref  crossref  isi  elib
    10. A. G. Baskakov, V. E. Strukov, I. I. Strukova, “On the almost periodic at infinity functions from homogeneous spaces”, Probl. anal. Issues Anal., 7(25):2 (2018), 3–19  mathnet  crossref  elib
    11. A. G. Baskakov, L. Yu. Kabantsova, I. D. Kostrub, T. I. Smagina, “Linear differential operators and operator matrices of the second order”, Differ. Equ., 53:1 (2017), 8–17  crossref  mathscinet  zmath  isi  scopus
    12. A. A. Ryzhkova, “Garmonicheskii analiz periodicheskikh na beskonechnosti posledovatelnostei”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 1(38), 22–32  mathnet  crossref
    13. A. G. Baskakov, T. K. Katsaran, T. I. Smagina, “Linear differential second-order equations in Banach space and splitting of operators”, Russian Math. (Iz. VUZ), 61:10 (2017), 32–43  mathnet  crossref  isi
    14. I. I. Strukova, “Garmonicheskii analiz periodicheskikh na beskonechnosti funktsii v odnorodnykh prostranstvakh”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 2(39), 29–38  mathnet  crossref
    15. I. A. Trishina, “Pochti periodicheskie na beskonechnosti funktsii otnositelno podprostranstva integralno ubyvayuschikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 17:4 (2017), 402–418  mathnet  crossref  elib
    16. A. G. Baskakov, I. A. Krishtal, “Spectral analysis of abstract parabolic operators in homogeneous function spaces, II”, Mediterr. J. Math., 14:4 (2017), UNSP 181  crossref  mathscinet  isi  scopus
    17. M. S. Bichegkuev, “Lyapunov Transformation of Differential Operators with Unbounded Operator Coefficients”, Math. Notes, 99:1 (2016), 24–36  mathnet  crossref  crossref  mathscinet  isi  elib
    18. I. I. Strukova, “On Wiener's Theorem for functions periodic at infinity”, Siberian Math. J., 57:1 (2016), 145–154  mathnet  crossref  crossref  mathscinet  isi  elib
    19. A. G. Baskakov, I. A. Krishtal, “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterr. J. Math., 13:5 (2016), 2443–2462  crossref  mathscinet  zmath  isi  scopus
    20. A. G. Baskakov, “Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces”, Math. Notes, 97:2 (2015), 164–178  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1812
    Full-text PDF :284
    References:131
    First page:48
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025