Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 1, Pages 12–18
DOI: https://doi.org/10.4213/mzm8922
(Mi mzm8922)
 

This article is cited in 4 scientific papers (total in 4 papers)

Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra

A. Yu. Vesnina, D. Repovšb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b University of Ljubljana, Slovenia
Full-text PDF (458 kB) Citations (4)
References:
Abstract: For a compact right-angled polyhedron $R$ in Lobachevskii space $\mathbb H^3$, let $\operatorname{vol}(R)$ denote its volume and $\operatorname{vert}(R)$, the number of its vertices. Upper and lower bounds for $\operatorname{vol}(R)$ were recently obtained by Atkinson in terms of $\operatorname{vert}(R)$. In constructing a two-parameter family of polyhedra, we show that the asymptotic upper bound $5v_3/8$, where $v_3$ is the volume of the ideal regular tetrahedron in $\mathbb H^3$, is a double limit point for the ratios $\operatorname{vol}(R)/\operatorname{vert}(R)$. Moreover, we improve the lower bound in the case $\operatorname{vert}(R)\le 56$.
Keywords: right-angled hyperbolic polyhedron, volume estimate for hyperbolic polyhedra, Lobachevskii space, Löbell polyhedron, dodecahedron.
Received: 29.12.2009
English version:
Mathematical Notes, 2011, Volume 89, Issue 1, Pages 31–36
DOI: https://doi.org/10.1134/S0001434611010032
Bibliographic databases:
Document Type: Article
UDC: 514
Language: Russian
Citation: A. Yu. Vesnin, D. Repovš, “Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra”, Mat. Zametki, 89:1 (2011), 12–18; Math. Notes, 89:1 (2011), 31–36
Citation in format AMSBIB
\Bibitem{VesRep11}
\by A.~Yu.~Vesnin, D.~Repov{\v s}
\paper Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 1
\pages 12--18
\mathnet{http://mi.mathnet.ru/mzm8922}
\crossref{https://doi.org/10.4213/mzm8922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841489}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 1
\pages 31--36
\crossref{https://doi.org/10.1134/S0001434611010032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288653100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952380587}
Linking options:
  • https://www.mathnet.ru/eng/mzm8922
  • https://doi.org/10.4213/mzm8922
  • https://www.mathnet.ru/eng/mzm/v89/i1/p12
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:812
    Full-text PDF :243
    References:77
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024