Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 1, Pages 12–18
DOI: https://doi.org/10.4213/mzm8922
(Mi mzm8922)
 

This article is cited in 4 scientific papers (total in 4 papers)

Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra

A. Yu. Vesnina, D. Repovšb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b University of Ljubljana, Slovenia
Full-text PDF (458 kB) Citations (4)
References:
Abstract: For a compact right-angled polyhedron R in Lobachevskii space H3, let vol(R) denote its volume and vert(R), the number of its vertices. Upper and lower bounds for vol(R) were recently obtained by Atkinson in terms of vert(R). In constructing a two-parameter family of polyhedra, we show that the asymptotic upper bound 5v3/8, where v3 is the volume of the ideal regular tetrahedron in H3, is a double limit point for the ratios vol(R)/vert(R). Moreover, we improve the lower bound in the case vert(R)56.
Keywords: right-angled hyperbolic polyhedron, volume estimate for hyperbolic polyhedra, Lobachevskii space, Löbell polyhedron, dodecahedron.
Received: 29.12.2009
English version:
Mathematical Notes, 2011, Volume 89, Issue 1, Pages 31–36
DOI: https://doi.org/10.1134/S0001434611010032
Bibliographic databases:
Document Type: Article
UDC: 514
Language: Russian
Citation: A. Yu. Vesnin, D. Repovš, “Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra”, Mat. Zametki, 89:1 (2011), 12–18; Math. Notes, 89:1 (2011), 31–36
Citation in format AMSBIB
\Bibitem{VesRep11}
\by A.~Yu.~Vesnin, D.~Repov{\v s}
\paper Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 1
\pages 12--18
\mathnet{http://mi.mathnet.ru/mzm8922}
\crossref{https://doi.org/10.4213/mzm8922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841489}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 1
\pages 31--36
\crossref{https://doi.org/10.1134/S0001434611010032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288653100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952380587}
Linking options:
  • https://www.mathnet.ru/eng/mzm8922
  • https://doi.org/10.4213/mzm8922
  • https://www.mathnet.ru/eng/mzm/v89/i1/p12
  • This publication is cited in the following 4 articles:
    1. Inoue T., “Exploring the List of Smallest Right-Angled Hyperbolic Polyhedra”, Exp. Math., 31:1 (2022), 165–183  crossref  mathscinet  isi  scopus
    2. L. N. Romakina, “On the area of a trihedral on a hyperbolic plane of positive curvature”, Siberian Adv. Math., 25:2 (2015), 138–153  mathnet  crossref  mathscinet
    3. Cavicchioli A., Spaggiari F., Telloni A.I., “Cusped Hyperbolic 3-Manifolds From Some Regular Polyhedra”, Houst. J. Math., 39:4 (2013), 1161–1174  mathscinet  zmath  isi
    4. Alberto Cavicchioli, Fulvia Spaggiari, Agnese Ilaria Telloni, “Fundamental Group and Covering Properties of Hyperbolic Surgery Manifolds”, Geometry, 2013 (2013), 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:864
    Full-text PDF :263
    References:85
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025