Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 1, Pages 3–11
DOI: https://doi.org/10.4213/mzm6578
(Mi mzm6578)
 

This article is cited in 4 scientific papers (total in 4 papers)

An Infinite Algebraic System in the Irregular Case

L. G. Arabadzhyanab

a Institute of Mathematics, National Academy of Sciences of Armenia
b Armenian State Teachers' Training University named after Khachatur Abovian
Full-text PDF (470 kB) Citations (4)
References:
Abstract: We obtain sufficient conditions for the nontrivial solvability of systems of the form
φi=bi+λij=0aijφj,iZ+def={0,1,2,,n,},
and of the corresponding homogeneous systems. It is assumed that the sequences b=(b0,b1,b2,) and λ=(λ0,λ1,λ2,) and the Toeplitz matrix A=(aij) satisfy the conditions
aj0,jZ,j=aj=1,j=|j|aj<,j=jaj<0,bj0,jZ+,j=0bj<,1λi(ij=aj)1,iZ+.
Under these conditions, we construct bounded solutions of homogeneous and inhomogeneous systems of the form indicated above.
Keywords: algebraic system, co-conservative system, Toeplitz matrix, Wiener–Hopf equation.
Received: 12.11.2008
English version:
Mathematical Notes, 2011, Volume 89, Issue 1, Pages 1–10
DOI: https://doi.org/10.1134/S0001434611010019
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: L. G. Arabadzhyan, “An Infinite Algebraic System in the Irregular Case”, Mat. Zametki, 89:1 (2011), 3–11; Math. Notes, 89:1 (2011), 1–10
Citation in format AMSBIB
\Bibitem{Ara11}
\by L.~G.~Arabadzhyan
\paper An Infinite Algebraic System in the Irregular Case
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/mzm6578}
\crossref{https://doi.org/10.4213/mzm6578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841488}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 1
\pages 1--10
\crossref{https://doi.org/10.1134/S0001434611010019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288653100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952403935}
Linking options:
  • https://www.mathnet.ru/eng/mzm6578
  • https://doi.org/10.4213/mzm6578
  • https://www.mathnet.ru/eng/mzm/v89/i1/p3
  • This publication is cited in the following 4 articles:
    1. A. S. Petrosyan, S. M. Andriyan, Kh. A. Khachatryan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa beskonechnoi sistemy nelineinykh dvumernykh uravnenii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 24:4 (2024), 498–511  mathnet  crossref
    2. Kh. A. Khachatryan, V. G. Dilanyan, “The solvability of an infinite system of nonlinear algebraic equations with Toeplitz matrix”, Uch. zapiski EGU, ser. Fizika i Matematika, 57:3 (2023), 69–78  mathnet  crossref
    3. Khachatryan Kh.A., Andriyan S.M., “On the Solvability of a Class of Discrete Matrix Equations With Cubic Nonlinearity”, Ukr. Math. J., 71:12 (2020), 1910–1928  crossref  mathscinet  isi
    4. Khachatryan Kh.A., Broyan M.F., “One-Parameter Family of Positive Solutions for a Class of Non-Linear Infinite Algebraic Systems with Toeplitz-Hankel Type Matrices”, J. Contemp. Math. Anal.-Armen. Aca., 48:5 (2013), 209–220  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:805
    Full-text PDF :216
    References:68
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025