Abstract:
We obtain sufficient conditions for the nontrivial solvability of systems of the form
φi=bi+λi∞∑j=0ai−jφj,i∈Z+def={0,1,2,…,n,…},
and of the corresponding homogeneous systems. It is assumed that the sequences b=(b0,b1,b2,…) and λ=(λ0,λ1,λ2,…) and the Toeplitz matrix A=(ai−j) satisfy the conditions
aj⩾0,j∈Z,∞∑j=−∞aj=1,∞∑j=−∞|j|aj<∞,∞∑j=−∞jaj<0,bj⩾0,j∈Z+,∞∑j=0bj<∞,1⩽λi⩽(i∑j=−∞aj)−1,i∈Z+.
Under these conditions, we construct bounded solutions of homogeneous and inhomogeneous systems of the form indicated above.
\Bibitem{Ara11}
\by L.~G.~Arabadzhyan
\paper An Infinite Algebraic System in the Irregular Case
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/mzm6578}
\crossref{https://doi.org/10.4213/mzm6578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841488}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 1
\pages 1--10
\crossref{https://doi.org/10.1134/S0001434611010019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288653100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952403935}
Linking options:
https://www.mathnet.ru/eng/mzm6578
https://doi.org/10.4213/mzm6578
https://www.mathnet.ru/eng/mzm/v89/i1/p3
This publication is cited in the following 4 articles:
A. S. Petrosyan, S. M. Andriyan, Kh. A. Khachatryan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa beskonechnoi sistemy nelineinykh dvumernykh uravnenii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 24:4 (2024), 498–511
Kh. A. Khachatryan, V. G. Dilanyan, “The solvability of an infinite system of nonlinear algebraic equations with Toeplitz matrix”, Uch. zapiski EGU, ser. Fizika i Matematika, 57:3 (2023), 69–78
Khachatryan Kh.A., Andriyan S.M., “On the Solvability of a Class of Discrete Matrix Equations With Cubic Nonlinearity”, Ukr. Math. J., 71:12 (2020), 1910–1928
Khachatryan Kh.A., Broyan M.F., “One-Parameter Family of Positive Solutions for a Class of Non-Linear Infinite Algebraic Systems with Toeplitz-Hankel Type Matrices”, J. Contemp. Math. Anal.-Armen. Aca., 48:5 (2013), 209–220