Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 5, Pages 764–786
DOI: https://doi.org/10.4213/mzm8719
(Mi mzm8719)
 

This article is cited in 40 scientific papers (total in 40 papers)

Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: It is established that a small periodic singular or regular perturbation of the boundary of a cylindrical three-dimensional waveguide can open up a gap in the continuous spectrum of the Dirichlet problem for the Laplace operator in the resulting periodic waveguide. A singular perturbation results in the formation of a periodic family of small cavities while a regular one leads to a gentle periodic bending of the boundary. If the period is short, there is no gap, while if it is long, a gap appears immediately after the first segment of the continuous spectrum. The result is obtained by asymptotic analysis of the eigenvalues of an auxiliary problem on the perturbed cell of periodicity.
Keywords: cylindrical waveguide, gap in a continuous spectrum, Laplace operator, Dirichlet problem, Helmholtz equation, cell of periodicity, Sobolev space.
Received: 18.08.2008
English version:
Mathematical Notes, 2010, Volume 87, Issue 5, Pages 738–756
DOI: https://doi.org/10.1134/S0001434610050123
Bibliographic databases:
Document Type: Article
UDC: 517.956.227:517.958
Language: Russian
Citation: S. A. Nazarov, “Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide”, Mat. Zametki, 87:5 (2010), 764–786; Math. Notes, 87:5 (2010), 738–756
Citation in format AMSBIB
\Bibitem{Naz10}
\by S.~A.~Nazarov
\paper Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 5
\pages 764--786
\mathnet{http://mi.mathnet.ru/mzm8719}
\crossref{https://doi.org/10.4213/mzm8719}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766589}
\elib{https://elibrary.ru/item.asp?id=15334599}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 5
\pages 738--756
\crossref{https://doi.org/10.1134/S0001434610050123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279600700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954408139}
Linking options:
  • https://www.mathnet.ru/eng/mzm8719
  • https://doi.org/10.4213/mzm8719
  • https://www.mathnet.ru/eng/mzm/v87/i5/p764
  • This publication is cited in the following 40 articles:
    1. S. A. Nazarov, “Gaps in the Spectrum of Thin Waveguides with Periodically Locally Deformed Walls”, Comput. Math. and Math. Phys., 64:1 (2024), 99  crossref
    2. S. A. Nazarov, “Lakuny v spektre tonkikh volnovodov s periodicheski raspolozhennymi lokalnymi deformatsiyami stenok”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:1 (2024)  crossref
    3. Delfina Gómez, Sergei A. Nazarov, Rafael Orive-Illera, María-Eugenia Pérez-Martínez, “Spectral gaps in a double-periodic perforated Neumann waveguide”, ASY, 131:3-4 (2023), 385  crossref
    4. Richard Craster, Sébastien Guenneau, Muamer Kadic, Martin Wegener, “Mechanical metamaterials”, Rep. Prog. Phys., 86:9 (2023), 094501  crossref
    5. Nazarov S.A., Taskinen J., “Band-Gap Structure of the Spectrum of the Water-Wave Problem in a Shallow Canal With a Periodic Family of Deep Pools”, Rev. Mat. Complut., 2022  crossref  isi
    6. D'Elia L., Nazarov S.A., “Gaps in the Spectrum of Two-Dimensional Square Packing of Stiff Disks”, Appl. Anal., 2022  crossref  isi
    7. Rosler F., “A Strange Vertex Condition Coming From Nowhere”, SIAM J. Math. Anal., 53:3 (2021), 3098–3122  crossref  mathscinet  isi  scopus
    8. Nazarov S.A., Chesnel L., “Transmission and Trapping of Waves in An Acoustic Waveguide With Perforated Cross-Walls”, Fluid Dyn., 56:8 (2021), 1070–1093  crossref  mathscinet  isi
    9. D. Gómez, S. A. Nazarov, R. Orive-Illera, M.-E. Pérez-Martínez, “Remark on Justification of Asymptotics of Spectra of Cylindrical Waveguides with Periodic Singular Perturbations of Boundary and Coefficients”, J Math Sci, 257:5 (2021), 597  crossref
    10. S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Nazarov S.A., “Anomalies of Acoustic Wave Scattering Near the Cut-Off Points of Continuous Spectrum (a Review)”, Acoust. Phys., 66:5 (2020), 477–494  crossref  isi
    12. Nazarov S.A. Orive-Illera R. Perez-Martinez M.-E., “Asymptotic Structure of the Spectrum in a Dirichlet-Strip With Double Periodic Perforations”, Netw. Heterog. Media, 14:4 (2019), 733–757  crossref  mathscinet  isi
    13. Bakharev F.L. Eugenia Perez M., “Spectral Gaps For the Dirichlet-Laplacian in a 3-D Waveguide Periodically Perturbed By a Family of Concentrated Masses”, Math. Nachr., 291:4 (2018), 556–575  crossref  mathscinet  zmath  isi  scopus
    14. Nazarov S.A. Taskinen J., “Essential Spectrum of a Periodic Waveguide With Non-Periodic Perturbation”, J. Math. Anal. Appl., 463:2 (2018), 922–933  crossref  mathscinet  zmath  isi  scopus
    15. Bakharev F.L., Exner P., “Geometrically Induced Spectral Effects in Tubes With a Mixed Dirichlet-Neumann Boundary”, Rep. Math. Phys., 81:2 (2018), 213–231  crossref  mathscinet  isi  scopus
    16. Piat V.Ch., Nazarov S.A., Ruotsalainen K.M., “Spectral Gaps and Non-Bragg Resonances in a Water Channel”, Rend. Lincei-Mat. Appl., 29:2 (2018), 321–342  crossref  mathscinet  zmath  isi  scopus
    17. S. A. Nazarov, “Breakdown of cycles and the possibility of opening spectral gaps in a square lattice of thin acoustic waveguides”, Izv. Math., 82:6 (2018), 1148–1195  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. S. A. Nazarov, “Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations”, J. Math. Sci. (N. Y.), 243:5 (2019), 746–773  mathnet  crossref
    19. Nazarov S.A., “Wave Scattering in the Joint of a Straight and a Periodic Waveguide”, Pmm-J. Appl. Math. Mech., 81:2 (2017), 129–147  crossref  mathscinet  isi  scopus
    20. Cardone G. Khrabustovskyi A., “Spectrum of a Singularly Perturbed Periodic Thin Waveguide”, J. Math. Anal. Appl., 454:2 (2017), 673–694  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:715
    Full-text PDF :218
    References:182
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025