Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 5, Pages 764–786
DOI: https://doi.org/10.4213/mzm8719
(Mi mzm8719)
 

This article is cited in 40 scientific papers (total in 40 papers)

Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: It is established that a small periodic singular or regular perturbation of the boundary of a cylindrical three-dimensional waveguide can open up a gap in the continuous spectrum of the Dirichlet problem for the Laplace operator in the resulting periodic waveguide. A singular perturbation results in the formation of a periodic family of small cavities while a regular one leads to a gentle periodic bending of the boundary. If the period is short, there is no gap, while if it is long, a gap appears immediately after the first segment of the continuous spectrum. The result is obtained by asymptotic analysis of the eigenvalues of an auxiliary problem on the perturbed cell of periodicity.
Keywords: cylindrical waveguide, gap in a continuous spectrum, Laplace operator, Dirichlet problem, Helmholtz equation, cell of periodicity, Sobolev space.
Received: 18.08.2008
English version:
Mathematical Notes, 2010, Volume 87, Issue 5, Pages 738–756
DOI: https://doi.org/10.1134/S0001434610050123
Bibliographic databases:
Document Type: Article
UDC: 517.956.227:517.958
Language: Russian
Citation: S. A. Nazarov, “Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide”, Mat. Zametki, 87:5 (2010), 764–786; Math. Notes, 87:5 (2010), 738–756
Citation in format AMSBIB
\Bibitem{Naz10}
\by S.~A.~Nazarov
\paper Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 5
\pages 764--786
\mathnet{http://mi.mathnet.ru/mzm8719}
\crossref{https://doi.org/10.4213/mzm8719}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766589}
\elib{https://elibrary.ru/item.asp?id=15334599}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 5
\pages 738--756
\crossref{https://doi.org/10.1134/S0001434610050123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279600700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954408139}
Linking options:
  • https://www.mathnet.ru/eng/mzm8719
  • https://doi.org/10.4213/mzm8719
  • https://www.mathnet.ru/eng/mzm/v87/i5/p764
  • This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:671
    Full-text PDF :206
    References:161
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024