Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 3, Pages 337–349
DOI: https://doi.org/10.4213/mzm8498
(Mi mzm8498)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the Absence of Local Solutions of Several Evolutionary Problems

E. I. Galakhov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider the existence problem for local (with respect to time) solutions of quasilinear evolutionary partial differential equations and inequalities with singular coefficients and initial conditions. We obtain sufficient conditions for instantaneous blow-up of solutions and show that the results thus obtained cannot be improved in the function class under study.
Keywords: existence problem, quasilinear evolutionary PDE, weak solution, Dirichlet boundary condition, heat equation, Sobolev space, Carathéodory function.
Received: 27.10.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 3, Pages 314–324
DOI: https://doi.org/10.1134/S000143460909003X
Bibliographic databases:
UDC: 517.954
Language: Russian
Citation: E. I. Galakhov, “On the Absence of Local Solutions of Several Evolutionary Problems”, Mat. Zametki, 86:3 (2009), 337–349; Math. Notes, 86:3 (2009), 314–324
Citation in format AMSBIB
\Bibitem{Gal09}
\by E.~I.~Galakhov
\paper On the Absence of Local Solutions of Several Evolutionary Problems
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 3
\pages 337--349
\mathnet{http://mi.mathnet.ru/mzm8498}
\crossref{https://doi.org/10.4213/mzm8498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591372}
\zmath{https://zbmath.org/?q=an:1181.35304}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 3
\pages 314--324
\crossref{https://doi.org/10.1134/S000143460909003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249113907}
Linking options:
  • https://www.mathnet.ru/eng/mzm8498
  • https://doi.org/10.4213/mzm8498
  • https://www.mathnet.ru/eng/mzm/v86/i3/p337
  • This publication is cited in the following 10 articles:
    1. Meiirkhan B. Borikhanov, Michael Ruzhansky, Berikbol T. Torebek, “Instantaneous blow-up solutions for nonlinear Sobolev-type equations on the Heisenberg groups”, DCDS-S, 2024  crossref
    2. V. E. Admasu, “On the absence of weak solutions of nonlinear nonnegative higher order parabolic inequalities with a nonlocal source”, Comput. Math. Math. Phys., 63:6 (2023), 1052–1063  mathnet  mathnet  crossref  crossref
    3. Mohamed Jleli, Bessem Samet, “Instantaneous blow-up for nonlinear Sobolev type equations with potentials on Riemannian manifolds”, CPAA, 21:6 (2022), 2065  crossref
    4. M. O. Korpusov, A. A. Panin, A. E. Shishkov, “On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type”, Izv. Math., 85:1 (2021), 111–144  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Jleli M., Samet B., “Instantaneous Blow-Up For a Fractional in Time Equation of Sobolev Type”, Math. Meth. Appl. Sci., 43:8 (2020), 5645–5652  crossref  mathscinet  isi
    6. M. O. Korpusov, A. A. Panin, “Instantaneous blow-up versus local solubility of the Cauchy problem for a two-dimensional equation of a semiconductor with heating”, Izv. Math., 83:6 (2019), 1174–1200  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Korpusov M.O., Lukyanenko D.V., “Instantaneous Blow-Up Versus Local Solvability For One Problem of Propagation of Nonlinear Waves in Semiconductors”, J. Math. Anal. Appl., 459:1 (2018), 159–181  crossref  mathscinet  zmath  isi  scopus
    8. M. O. Korpusov, “On an instantaneous blow-up of solutions of evolutionary problems on the half-line”, Izv. Math., 82:5 (2018), 914–930  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Korpusov M.O., Ovchinnikov A.V., Panin A.A., “Instantaneous Blow-Up Versus Local Solvability of Solutions to the Cauchy Problem For the Equation of a Semiconductor in a Magnetic Field”, Math. Meth. Appl. Sci., 41:17, SI (2018), 8070–8099  crossref  mathscinet  zmath  isi
    10. M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type”, Izv. Math., 79:5 (2015), 955–1012  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :235
    References:74
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025