Abstract:
We consider the existence problem for local (with respect to time) solutions of quasilinear evolutionary partial differential equations and inequalities with singular coefficients and initial conditions. We obtain sufficient conditions for instantaneous blow-up of solutions and show that the results thus obtained cannot be improved in the function class under study.
Citation:
E. I. Galakhov, “On the Absence of Local Solutions of Several Evolutionary Problems”, Mat. Zametki, 86:3 (2009), 337–349; Math. Notes, 86:3 (2009), 314–324
\Bibitem{Gal09}
\by E.~I.~Galakhov
\paper On the Absence of Local Solutions of Several Evolutionary Problems
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 3
\pages 337--349
\mathnet{http://mi.mathnet.ru/mzm8498}
\crossref{https://doi.org/10.4213/mzm8498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591372}
\zmath{https://zbmath.org/?q=an:1181.35304}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 3
\pages 314--324
\crossref{https://doi.org/10.1134/S000143460909003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249113907}
Linking options:
https://www.mathnet.ru/eng/mzm8498
https://doi.org/10.4213/mzm8498
https://www.mathnet.ru/eng/mzm/v86/i3/p337
This publication is cited in the following 10 articles:
Meiirkhan B. Borikhanov, Michael Ruzhansky, Berikbol T. Torebek, “Instantaneous blow-up solutions for nonlinear Sobolev-type equations on the Heisenberg groups”, DCDS-S, 2024
V. E. Admasu, “On the absence of weak solutions of nonlinear nonnegative higher order parabolic inequalities with a nonlocal source”, Comput. Math. Math. Phys., 63:6 (2023), 1052–1063
Mohamed Jleli, Bessem Samet, “Instantaneous blow-up for nonlinear Sobolev type equations with potentials on Riemannian manifolds”, CPAA, 21:6 (2022), 2065
M. O. Korpusov, A. A. Panin, A. E. Shishkov, “On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type”, Izv. Math., 85:1 (2021), 111–144
Jleli M., Samet B., “Instantaneous Blow-Up For a Fractional in Time Equation of Sobolev Type”, Math. Meth. Appl. Sci., 43:8 (2020), 5645–5652
M. O. Korpusov, A. A. Panin, “Instantaneous blow-up versus local solubility of the Cauchy problem for a two-dimensional equation
of a semiconductor with heating”, Izv. Math., 83:6 (2019), 1174–1200
Korpusov M.O., Lukyanenko D.V., “Instantaneous Blow-Up Versus Local Solvability For One Problem of Propagation of Nonlinear Waves in Semiconductors”, J. Math. Anal. Appl., 459:1 (2018), 159–181
M. O. Korpusov, “On an instantaneous blow-up of solutions of evolutionary problems on the half-line”, Izv. Math., 82:5 (2018), 914–930
Korpusov M.O., Ovchinnikov A.V., Panin A.A., “Instantaneous Blow-Up Versus Local Solvability of Solutions to the Cauchy Problem For the Equation of a Semiconductor in a Magnetic Field”, Math. Meth. Appl. Sci., 41:17, SI (2018), 8070–8099
M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type”, Izv. Math., 79:5 (2015), 955–1012