Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 3, Pages 328–336
DOI: https://doi.org/10.4213/mzm3901
(Mi mzm3901)
 

This article is cited in 32 scientific papers (total in 32 papers)

A Sharp Inequality of Jackson–Stechkin type in $L_2$ and the Widths of Functional Classes

S. B. Vakarchuka, V. I. Zabutnayab

a Dnepropetrovsk University of Economics and Law
b Dnepropetrovsk National University
References:
Abstract: We obtain sharp inequalities of Jackson–Stechkin type in which the modulus of continuity of the function is defined in terms of the Steklov function. For classes of functions given by this characteristic, we obtain sharp values of the $n$-widths.
Keywords: inequality of Jackson–Stechkin type, modulus of continuity, Fourier series, Steklov function, Bernstein $n$-width, Kolmogorov $n$-width, Gelfand $n$-width.
Received: 18.06.2007
English version:
Mathematical Notes, 2009, Volume 86, Issue 3, Pages 306–313
DOI: https://doi.org/10.1134/S0001434609090028
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, V. I. Zabutnaya, “A Sharp Inequality of Jackson–Stechkin type in $L_2$ and the Widths of Functional Classes”, Mat. Zametki, 86:3 (2009), 328–336; Math. Notes, 86:3 (2009), 306–313
Citation in format AMSBIB
\Bibitem{VakZab09}
\by S.~B.~Vakarchuk, V.~I.~Zabutnaya
\paper A Sharp Inequality of Jackson--Stechkin type in~$L_2$ and the Widths of Functional Classes
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 3
\pages 328--336
\mathnet{http://mi.mathnet.ru/mzm3901}
\crossref{https://doi.org/10.4213/mzm3901}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591371}
\zmath{https://zbmath.org/?q=an:1194.42005}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 3
\pages 306--313
\crossref{https://doi.org/10.1134/S0001434609090028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249098247}
Linking options:
  • https://www.mathnet.ru/eng/mzm3901
  • https://doi.org/10.4213/mzm3901
  • https://www.mathnet.ru/eng/mzm/v86/i3/p328
  • This publication is cited in the following 32 articles:
    1. Sergіi Vakarchuk, Valentina Zabutna, Mikhailo Vakarchuk, “Userednenі kharakteristiki gladkostі v $L_2$ ta otsіnki znachen poperechnikіv funktsіonalnikh klasіv”, Ukr. Mat. Zhurn., 77:2 (2025), 83  crossref
    2. M. R. Langarshoev, “Nailuchshee priblizhenie analiticheskikh v edinichnom kruge funktsii v vesovom prostranstve Bergmana $\mathscr{B}_{2,\mu}$”, Vestnik rossiiskikh universitetov. Matematika, 29:145 (2024), 65–76  mathnet  crossref
    3. S. Vakarchuk, M. Vakarchuk, “Nablizhennya v serednomu sumami Fur'є–Besselya klasіv funktsіi u prostorі
      L 2
      [
      ( 0,1 )
      ; x ]
      ta otsіnki znachen ïkh n -poperechnikіv”, Ukr. Mat. Zhurn., 76:2 (2024), 198  crossref
    4. M. R. Langarshoev, A. G. Aidarmamadov, “Nailuchshee priblizhenie analiticheskikh v edinichnom kruge funktsii v vesovom prostranstve Bergmana”, Dalnevost. matem. zhurn., 24:1 (2024), 55–66  mathnet  crossref
    5. M. O. Akobirshoev, “O nailuchshem sovmestnom priblizhenii “uglom” v srednem periodicheskikh funktsii dvukh peremennykh iz nekotorykh klassov”, Izv. vuzov. Matem., 2024, no. 7, 24–36  mathnet  crossref
    6. Sergii Vakarchuk, Mykhailo Vakarchuk, “Approximation in the Mean for the Classes Of Functions in the Space L2[(0, 1); x] by The Fourier–Bessel Sums And Estimation of the Values of Their n-Widths”, Ukr Math J, 76:2 (2024), 214  crossref
    7. M. O. Akobirshoev, “On the Best Simultaneous Angle Approximation in the Mean of Periodic Functions of Two Variables from Some Classes”, Russ Math., 68:7 (2024), 14  crossref
    8. M. Sh. Shabozov, “On the Best Simultaneous Approximation in the Bergman Space $B_2$”, Math. Notes, 114:3 (2023), 377–386  mathnet  crossref  crossref  mathscinet
    9. Sergii B. Vakarchuk, “On estimates of diameter values of classes of functions in the weight space L2,γ (ℝ2), γ = exp(–x2 – y2)”, J Math Sci, 264:4 (2022), 471  crossref
    10. M. R. Langarshoev, S. S. Khorazmshoev, “Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$”, Ufa Math. J., 13:1 (2021), 56–67  mathnet  crossref  isi
    11. M. R. Langarshoev, “O tochnykh znacheniyakh poperechnikov nekotorykh klassov funktsii iz $L_{2}$”, Dalnevost. matem. zhurn., 21:1 (2021), 61–70  mathnet  crossref
    12. M. Sh. Shabozov, G. A. Yusupov, D. D. Zargarov, “O nailuchshei sovmestnoi polinomialnoi approksimatsii funktsii i ikh proizvodnykh v prostranstve Khardi”, Tr. IMM UrO RAN, 27, no. 4, 2021, 239–254  mathnet  crossref  elib
    13. Akgun R., “Mixed Modulus of Smoothness With Muckenhoupt Weights and Approximation By Angle”, Complex Var. Elliptic Equ., 64:2 (2019), 330–351  crossref  mathscinet  zmath  isi  scopus
    14. S. B. Vakarchuk, “Approximation by classical orthogonal polynomials with weight in spaces $L_{2,\gamma}(a,b)$ and widths of some functional classes”, Russian Math. (Iz. VUZ), 63:12 (2019), 32–44  mathnet  crossref  crossref  isi
    15. Vakarchuk S.B., “On the Estimates of Widths of the Classes of Functions Defined By the Generalized Moduli of Continuity and Majorants in the Weighted Space l-2,l-X(0,1)”, Ukr. Math. J., 71:2 (2019), 202–214  crossref  mathscinet  isi
    16. Sergei B. Vakarchuk, “Widths of some classes of functions defined by the generalized moduli of continuity ω
      γ in the space L 2”, J Math Sci, 227:1 (2017), 105  crossref
    17. S. B. Vakarchuk, V. I. Zabutnaya, “Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space $L_2$ and Widths of Classes of Functions”, Math. Notes, 99:2 (2016), 222–242  mathnet  crossref  crossref  mathscinet  isi  elib
    18. Vakarchuk S.B., “Jackson-Type Inequalities with Generalized Modulus of Continuity and Exact Values of the n-Widths for the Classes of (?, ?)-Differentiable Functions in L 2. I”, Ukr. Math. J., 68:6 (2016), 823–848  crossref  mathscinet  isi  scopus
    19. S. B. Vakarchuk, “Generalized Smoothness Characteristics in Jackson-Type Inequalities and Widths of Classes of Functions in $L_2$”, Math. Notes, 98:4 (2015), 572–588  mathnet  crossref  crossref  mathscinet  isi  elib
    20. S. B. Vakarchuk, “Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev–Hermite Weight and Widths of Function Classes”, Math. Notes, 95:5 (2014), 599–614  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:609
    Full-text PDF :255
    References:64
    First page:20
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025