Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 6, Pages 803–817
DOI: https://doi.org/10.4213/mzm82
(Mi mzm82)
 

This article is cited in 1 scientific paper (total in 1 paper)

Estimates of CmCm-Capacity of Compact Sets in RN

A. M. Voroncov

M. V. Lomonosov Moscow State University
Full-text PDF (247 kB) Citations (1)
References:
Abstract: For a given homogeneous elliptic partial differential operator L with constant complex coefficients, the Banach space V of distributions in RN and a compact set X in RN, we study the quantity λV,L(X) equal to the distance in V from the class of functions f0 satisfying the equation Lf0=1 in a neighborhood of X (depending on f0) to the solution space of the equation Lf=0 in the neighborhoods of X. For V=BCm, we obtain upper and lower bounds for λV,L(X) in terms of the metric properties of the set X, which allows us to obtain estimates for λV,L(X) for a wide class of spaces V.
Received: 28.04.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 6, Pages 751–764
DOI: https://doi.org/10.1023/B:MATN.0000030985.99917.0a
Bibliographic databases:
UDC: 517.538.5+517.956.2
Language: Russian
Citation: A. M. Voroncov, “Estimates of Cm-Capacity of Compact Sets in RN”, Mat. Zametki, 75:6 (2004), 803–817; Math. Notes, 75:6 (2004), 751–764
Citation in format AMSBIB
\Bibitem{Vor04}
\by A.~M.~Voroncov
\paper Estimates of $C^m$-Capacity of Compact Sets in $\mathbb{R}^N$
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 6
\pages 803--817
\mathnet{http://mi.mathnet.ru/mzm82}
\crossref{https://doi.org/10.4213/mzm82}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085808}
\zmath{https://zbmath.org/?q=an:1064.31004}
\elib{https://elibrary.ru/item.asp?id=6618285}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 6
\pages 751--764
\crossref{https://doi.org/10.1023/B:MATN.0000030985.99917.0a}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400019}
Linking options:
  • https://www.mathnet.ru/eng/mzm82
  • https://doi.org/10.4213/mzm82
  • https://www.mathnet.ru/eng/mzm/v75/i6/p803
  • This publication is cited in the following 1 articles:
    1. Paul Gauthier, Petr V. Paramonov, Fields Institute Communications, 81, New Trends in Approximation Theory, 2018, 71  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:431
    Full-text PDF :203
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025