Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 6, Pages 818–833
DOI: https://doi.org/10.4213/mzm73
(Mi mzm73)
 

This article is cited in 4 scientific papers (total in 4 papers)

Homogenization of Elasticity Problems with Boundary Conditions of Signorini type

G. A. Iosif'yan

A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Full-text PDF (293 kB) Citations (4)
References:
Abstract: In a perforated domain $\Omega^\varepsilon =\Omega\cap\varepsilon \omega$ formed of a fixed domain $\Omega$ and an $\varepsilon$-compression of a 1-periodic domain $omega$, we consider problems of elasticity for variational inequalities with boundary conditions of Signorini type on a part of the surface $S^\varepsilon _0$ of perforation. We study the asymptotic behavior of solutions as $\varepsilon\to0$ depending on the structure of the set $S^\varepsilon _0$. In the general case, the limit (homogenized) problem has the two distinguishing properties: (i) the limit set of admissible displacements is determined by nonlinear restrictions almost everywhere in the domain $\Omega$, i.e., in the limit, the Signorini conditions on the surface $S^\varepsilon _0$ can turn into conditions posed at interior points of $\Omega$ (ii) the limit problem is stated for an homogenized Lagrangian which need not coincide with the quadratic form usually determining the homogenized elasticity tensor. Theorems concerning the homogenization of such problems were obtained by the two-scale convergence method. We describe how the limit set of admissible displacements and the homogenized Lagrangian depend on the geometry of the set $S^\varepsilon _0$ on which the Signorini conditions are posed.
Received: 14.01.2002
English version:
Mathematical Notes, 2004, Volume 75, Issue 6, Pages 765–779
DOI: https://doi.org/10.1023/B:MATN.0000030986.37555.f1
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: G. A. Iosif'yan, “Homogenization of Elasticity Problems with Boundary Conditions of Signorini type”, Mat. Zametki, 75:6 (2004), 818–833; Math. Notes, 75:6 (2004), 765–779
Citation in format AMSBIB
\Bibitem{Ios04}
\by G.~A.~Iosif'yan
\paper Homogenization of Elasticity Problems with Boundary Conditions of Signorini type
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 6
\pages 818--833
\mathnet{http://mi.mathnet.ru/mzm73}
\crossref{https://doi.org/10.4213/mzm73}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085809}
\zmath{https://zbmath.org/?q=an:02121423}
\elib{https://elibrary.ru/item.asp?id=13446315}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 6
\pages 765--779
\crossref{https://doi.org/10.1023/B:MATN.0000030986.37555.f1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400020}
Linking options:
  • https://www.mathnet.ru/eng/mzm73
  • https://doi.org/10.4213/mzm73
  • https://www.mathnet.ru/eng/mzm/v75/i6/p818
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :181
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024