Abstract:
For n=8 an upper bound is given for the functional
Vn=inftna1+a2+⋯+an(√aq−√a0)2,
which is defined on the class of even, nonnegative, trigonometric polynomials tn(φ)=∑nk=0akcoskφ, such that ak⩾0 (k=0,\dots,n), a_1>a_0:V_8\le34,\!54461566.
This publication is cited in the following 3 articles:
Nicol Leong, Michael J. Mossinghoff, “A note on trigonometric polynomials for lower bounds of \zeta(s)”, Funct. Approx. Comment. Math., -1:-1 (2025)
M. R. Gabdullin, S. V. Konyagin, “O rabotakh S. B. Stechkina po teorii chisel”, Chebyshevskii sb., 21:4 (2020), 9–18
Michael J. Mossinghoff, Timothy S. Trudgian, “Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function”, Journal of Number Theory, 157 (2015), 329