|
Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$
V. G. Doronin, A. A. Ligun Dneprodzerzhinsk Industrial Institute
Abstract:
The quantities $\sup\limits_{f\in W_\alpha^rV}\Hat{\Hat E}_n(f)_1$ ($r>-1$, $-\infty<\alpha<\infty$, $n=1,2\dots)$ are calculated, where $\Hat{\Hat E}_n(f)_1$ is the best approximation from above of the function $f$ by trigonometric polynomials of order $\le n-1$ in the metric of $L_1$.
Received: 19.02.1976
Citation:
V. G. Doronin, A. A. Ligun, “Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$”, Mat. Zametki, 22:3 (1977), 357–370; Math. Notes, 22:3 (1977), 688–696
Linking options:
https://www.mathnet.ru/eng/mzm8056 https://www.mathnet.ru/eng/mzm/v22/i3/p357
|
|