Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 22, Issue 3, Pages 357–370 (Mi mzm8056)  

Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$

V. G. Doronin, A. A. Ligun

Dneprodzerzhinsk Industrial Institute
Abstract: The quantities $\sup\limits_{f\in W_\alpha^rV}\Hat{\Hat E}_n(f)_1$ ($r>-1$, $-\infty<\alpha<\infty$, $n=1,2\dots)$ are calculated, where $\Hat{\Hat E}_n(f)_1$ is the best approximation from above of the function $f$ by trigonometric polynomials of order $\le n-1$ in the metric of $L_1$.
Received: 19.02.1976
English version:
Mathematical Notes, 1977, Volume 22, Issue 3, Pages 688–696
DOI: https://doi.org/10.1007/BF02412496
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. G. Doronin, A. A. Ligun, “Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$”, Mat. Zametki, 22:3 (1977), 357–370; Math. Notes, 22:3 (1977), 688–696
Citation in format AMSBIB
\Bibitem{DorLig77}
\by V.~G.~Doronin, A.~A.~Ligun
\paper Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 3
\pages 357--370
\mathnet{http://mi.mathnet.ru/mzm8056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=473674}
\zmath{https://zbmath.org/?q=an:0365.42002}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 3
\pages 688--696
\crossref{https://doi.org/10.1007/BF02412496}
Linking options:
  • https://www.mathnet.ru/eng/mzm8056
  • https://www.mathnet.ru/eng/mzm/v22/i3/p357
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025