|
This article is cited in 1 scientific paper (total in 1 paper)
On the convergence of double Fourier series of functions from $L_p$, $p>1$
I. L. Bloshanskii M. V. Lomonosov Moscow State University
Abstract:
It is proved that if a function from $L_p$, $p>1$, satisfies the condition
$$
\frac1{t\cdot\tau}\int_0^t\int_0^\tau|f(x+u,y+v)-f(x,y)|\,du\,dv=O\Bigl(\Bigl[\ln\frac1{t^2+\tau^2}\Bigr]^{-2}\Bigr),
$$
then the double Fourier series of function $f$, under summation over a rectangle, converges almost everywhere.
Received: 06.04.1976
Citation:
I. L. Bloshanskii, “On the convergence of double Fourier series of functions from $L_p$, $p>1$”, Mat. Zametki, 21:6 (1977), 777–788; Math. Notes, 21:6 (1977), 438–444
Linking options:
https://www.mathnet.ru/eng/mzm8008 https://www.mathnet.ru/eng/mzm/v21/i6/p777
|
|