|
This article is cited in 1 scientific paper (total in 1 paper)
On the convergence of double Fourier series of functions from Lp, p>1
I. L. Bloshanskii M. V. Lomonosov Moscow State University
Abstract:
It is proved that if a function from Lp, p>1, satisfies the condition
1t⋅τ∫t0∫τ0|f(x+u,y+v)−f(x,y)|dudv=O([ln1t2+τ2]−2),
then the double Fourier series of function f, under summation over a rectangle, converges almost everywhere.
Received: 06.04.1976
Citation:
I. L. Bloshanskii, “On the convergence of double Fourier series of functions from Lp, p>1”, Mat. Zametki, 21:6 (1977), 777–788; Math. Notes, 21:6 (1977), 438–444
Linking options:
https://www.mathnet.ru/eng/mzm8008 https://www.mathnet.ru/eng/mzm/v21/i6/p777
|
Statistics & downloads: |
Abstract page: | 234 | Full-text PDF : | 114 | First page: | 1 |
|