Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 6, Pages 777–788 (Mi mzm8008)  

This article is cited in 1 scientific paper (total in 1 paper)

On the convergence of double Fourier series of functions from $L_p$, $p>1$

I. L. Bloshanskii

M. V. Lomonosov Moscow State University
Full-text PDF (730 kB) Citations (1)
Abstract: It is proved that if a function from $L_p$, $p>1$, satisfies the condition
$$ \frac1{t\cdot\tau}\int_0^t\int_0^\tau|f(x+u,y+v)-f(x,y)|\,du\,dv=O\Bigl(\Bigl[\ln\frac1{t^2+\tau^2}\Bigr]^{-2}\Bigr), $$
then the double Fourier series of function $f$, under summation over a rectangle, converges almost everywhere.
Received: 06.04.1976
English version:
Mathematical Notes, 1977, Volume 21, Issue 6, Pages 438–444
DOI: https://doi.org/10.1007/BF01410171
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. L. Bloshanskii, “On the convergence of double Fourier series of functions from $L_p$, $p>1$”, Mat. Zametki, 21:6 (1977), 777–788; Math. Notes, 21:6 (1977), 438–444
Citation in format AMSBIB
\Bibitem{Blo77}
\by I.~L.~Bloshanskii
\paper On the convergence of double Fourier series of functions from $L_p$, $p>1$
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 6
\pages 777--788
\mathnet{http://mi.mathnet.ru/mzm8008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=487255}
\zmath{https://zbmath.org/?q=an:0359.42013}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 6
\pages 438--444
\crossref{https://doi.org/10.1007/BF01410171}
Linking options:
  • https://www.mathnet.ru/eng/mzm8008
  • https://www.mathnet.ru/eng/mzm/v21/i6/p777
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024