|
Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin
V. A. Baskakov Moscow Automobile and Road Institute
Abstract:
The complete asymptotic developments in powers of $1/n$ are derived for quantities characterizing approximation by singular integrals of de la Vallée Poussin
\begin{gather*}
V_n(f;x)=\frac1{\Delta_n}\int_{-\pi}^\pi f(x+t)\cos^{2n}\frac t2\,dt;
\\
\Delta_n=\int_{-\pi}^\pi\cos^{2n}\frac t2\,dt
\end{gather*}
of the function classes $\operatorname{Lip}\alpha$, $0<\alpha\le1$, $W^{(r)}$, $r\ge1$ an integer.
Received: 10.06.1976
Citation:
V. A. Baskakov, “Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin”, Mat. Zametki, 21:6 (1977), 769–776; Math. Notes, 21:6 (1977), 433–437
Linking options:
https://www.mathnet.ru/eng/mzm8007 https://www.mathnet.ru/eng/mzm/v21/i6/p769
|
Statistics & downloads: |
Abstract page: | 177 | Full-text PDF : | 75 | First page: | 1 |
|