Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 6, Pages 759–768 (Mi mzm8006)  

Degenerate differential operators in weighted Hölder spaces

V. P. Orlov

Voronezh State University
Abstract: A differential operator $\mathscr L$, arising from the differential expression
$$ lv(t)\equiv(-1)^rv^{[n]}(t)+\sum_{k=0}^{n-1}p_k(t)v^{[k]}(t)+Av(t),\quad0\le t\le1 $$
and system of boundary value conditions
$$ P_\nu[v]=\sum_{k=0}^{n_\nu}\alpha_{\nu k}v^{[k]}(1)=0,\quad\nu=1,\dots,\mu,\quad0\le\mu<n $$
is considered in a Banach space $E$. Here $v^{[k]}(t)=\bigl(\alpha(t)\frac d{dt}\bigr)^kv(t)$, $\alpha(t)$ being continuous for $t\ge0$, $\alpha(t)>0$ for $t>0$ and $\int_0^1\frac{dz}{\alpha(z)}=+\infty$; the operator $A$ is strongly positive in $E$. The estimates, are obtained for $\mathscr L$:
$$ \|A(\mathscr L+\lambda)^{-1}\|_{C_{01}^\alpha([0,1];E)}+\sum_{k=0}^n(1+|\lambda|)^{(n-k)/n}\Bigl\|\frac{d^{[k]}}{dt^k}(\mathscr L+\lambda)^{-1}\Bigr\|_{C_{01}^\alpha([0,1];E)}\le M, $$
$n$ even, $\lambda$ varying over a half plane.
Received: 03.10.1975
English version:
Mathematical Notes, 1977, Volume 21, Issue 6, Pages 428–433
DOI: https://doi.org/10.1007/BF01410169
Bibliographic databases:
UDC: 517.4
Language: Russian
Citation: V. P. Orlov, “Degenerate differential operators in weighted Hölder spaces”, Mat. Zametki, 21:6 (1977), 759–768; Math. Notes, 21:6 (1977), 428–433
Citation in format AMSBIB
\Bibitem{Orl77}
\by V.~P.~Orlov
\paper Degenerate differential operators in weighted H\"older spaces
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 6
\pages 759--768
\mathnet{http://mi.mathnet.ru/mzm8006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=454740}
\zmath{https://zbmath.org/?q=an:0398.34055|0375.34039}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 6
\pages 428--433
\crossref{https://doi.org/10.1007/BF01410169}
Linking options:
  • https://www.mathnet.ru/eng/mzm8006
  • https://www.mathnet.ru/eng/mzm/v21/i6/p759
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024