Abstract:
The multiple completeness of the root vectors of the pencil
$$
L(\lambda)=I-T_0-\lambda T_1H-\dots-\lambda^{n-1}T_{n-1}H^{n-1}-\lambda^nH^n-S(\lambda),
$$
where $I$ is the identity operator in the separable Hilbert space $\mathfrak H$, $S(\lambda)$ is an operator-valued function analytic for $|\lambda|>\eta$ with $S(\infty)=0$, and $T_k$ and $H$ are completely continuous operators, is studied. The method suggested in this note for proving the completeness does not use the factorization theorems, due to which we can remove certain restrictions on the function $S(\lambda)$ connected with the application of the factorization theorems.
Citation:
G. V. Radzievskii, “Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$”, Mat. Zametki, 21:3 (1977), 391–398; Math. Notes, 21:3 (1977), 218–222
\Bibitem{Rad77}
\by G.~V.~Radzievskii
\paper Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 3
\pages 391--398
\mathnet{http://mi.mathnet.ru/mzm7966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=442729}
\zmath{https://zbmath.org/?q=an:0402.47013}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 3
\pages 218--222
\crossref{https://doi.org/10.1007/BF01106747}
Linking options:
https://www.mathnet.ru/eng/mzm7966
https://www.mathnet.ru/eng/mzm/v21/i3/p391
This publication is cited in the following 6 articles:
E. Yu. Smolkin, M. O. Snegur, “Metod operatornykh puchkov i operator-funktsii v zadache o normalnykh volnakh zakrytogo regulyarnogo neodnorodnogo dielektricheskogo volnovoda proizvolnogo secheniya”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 2, 77–89
E. Yu. Smolkin, M. O. Snegur, A. O. Lapich, L. Yu. Gamayunova, “Issledovanie nelineinykh zadach na sobstvennye znacheniya dlya sistemy uravnenii Maksvella, opisyvayuschie rasprostranenie elektromagnitnykh voln v regulyarnykh neodnorodnykh ekranirovannykh (zakrytykh) volnoveduschikh strukturakh krugovogo secheniya s pogloscheniem”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2019, no. 3, 36–46
Smirnov Yu.G., Smol'kin E.Yu., “Operator Function Method in the Problem of Normal Waves in An Inhomogeneous Waveguide”, Differ. Equ., 54:9 (2018), 1168–1179
Yu. G. Smirnov, E. Yu. Smolkin, “Investigation of the Spectrum of the Problem of Normal Waves in a Closed Regular Inhomogeneous Dielectric Waveguide of Arbitrary Cross Section”, Dokl. Math., 97:1 (2018), 86
G. V. Radzievskii, “The problem of the completeness of root vectors in the spectral theory of operator-valued functions”, Russian Math. Surveys, 37:2 (1982), 91–164
G. V. Radzievskii, “On completeness of the set of root vectors of the operator pencil $L(\lambda)=I-\lambda^{-k}B-\lambda^nA$”, Russian Math. Surveys, 34:1 (1979), 237–238