Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 3, Pages 391–398 (Mi mzm7966)  

This article is cited in 6 scientific papers (total in 6 papers)

Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$

G. V. Radzievskii

Mathematics Institute, Academy of Sciences of the Ukrainian SSR
Full-text PDF (600 kB) Citations (6)
Abstract: The multiple completeness of the root vectors of the pencil
$$ L(\lambda)=I-T_0-\lambda T_1H-\dots-\lambda^{n-1}T_{n-1}H^{n-1}-\lambda^nH^n-S(\lambda), $$
where $I$ is the identity operator in the separable Hilbert space $\mathfrak H$, $S(\lambda)$ is an operator-valued function analytic for $|\lambda|>\eta$ with $S(\infty)=0$, and $T_k$ and $H$ are completely continuous operators, is studied. The method suggested in this note for proving the completeness does not use the factorization theorems, due to which we can remove certain restrictions on the function $S(\lambda)$ connected with the application of the factorization theorems.
Received: 20.07.1975
English version:
Mathematical Notes, 1977, Volume 21, Issue 3, Pages 218–222
DOI: https://doi.org/10.1007/BF01106747
Bibliographic databases:
UDC: 517.4
Language: Russian
Citation: G. V. Radzievskii, “Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$”, Mat. Zametki, 21:3 (1977), 391–398; Math. Notes, 21:3 (1977), 218–222
Citation in format AMSBIB
\Bibitem{Rad77}
\by G.~V.~Radzievskii
\paper Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 3
\pages 391--398
\mathnet{http://mi.mathnet.ru/mzm7966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=442729}
\zmath{https://zbmath.org/?q=an:0402.47013}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 3
\pages 218--222
\crossref{https://doi.org/10.1007/BF01106747}
Linking options:
  • https://www.mathnet.ru/eng/mzm7966
  • https://www.mathnet.ru/eng/mzm/v21/i3/p391
  • This publication is cited in the following 6 articles:
    1. E. Yu. Smolkin, M. O. Snegur, “Metod operatornykh puchkov i operator-funktsii v zadache o normalnykh volnakh zakrytogo regulyarnogo neodnorodnogo dielektricheskogo volnovoda proizvolnogo secheniya”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 2, 77–89  mathnet  crossref
    2. E. Yu. Smolkin, M. O. Snegur, A. O. Lapich, L. Yu. Gamayunova, “Issledovanie nelineinykh zadach na sobstvennye znacheniya dlya sistemy uravnenii Maksvella, opisyvayuschie rasprostranenie elektromagnitnykh voln v regulyarnykh neodnorodnykh ekranirovannykh (zakrytykh) volnoveduschikh strukturakh krugovogo secheniya s pogloscheniem”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2019, no. 3, 36–46  mathnet  crossref
    3. Smirnov Yu.G., Smol'kin E.Yu., “Operator Function Method in the Problem of Normal Waves in An Inhomogeneous Waveguide”, Differ. Equ., 54:9 (2018), 1168–1179  crossref  isi  scopus
    4. Yu. G. Smirnov, E. Yu. Smolkin, “Investigation of the Spectrum of the Problem of Normal Waves in a Closed Regular Inhomogeneous Dielectric Waveguide of Arbitrary Cross Section”, Dokl. Math., 97:1 (2018), 86  crossref
    5. G. V. Radzievskii, “The problem of the completeness of root vectors in the spectral theory of operator-valued functions”, Russian Math. Surveys, 37:2 (1982), 91–164  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. G. V. Radzievskii, “On completeness of the set of root vectors of the operator pencil $L(\lambda)=I-\lambda^{-k}B-\lambda^nA$”, Russian Math. Surveys, 34:1 (1979), 237–238  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :100
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025