Abstract:
Maslov's canonical operator method is used for constructing the asymptotic behavior with respect to a complex parameter of the fundamental solution of a secondorder elliptic equation with smooth finite coefficients. The asymptotic form is constructed on the assumption that all trajectories of the corresponding Hamiltonian system depart to infinity. The asymptotic form is used for investigating the analytic properties of the fundamental solution.
Citation:
T. M. Gataullin, “Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a complex parameter”, Mat. Zametki, 21:3 (1977), 377–390; Math. Notes, 21:3 (1977), 210–217
\Bibitem{Gat77}
\by T.~M.~Gataullin
\paper Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a~complex parameter
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 3
\pages 377--390
\mathnet{http://mi.mathnet.ru/mzm7965}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=477399}
\zmath{https://zbmath.org/?q=an:0399.35012|0351.35025}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 3
\pages 210--217
\crossref{https://doi.org/10.1007/BF01106746}
Linking options:
https://www.mathnet.ru/eng/mzm7965
https://www.mathnet.ru/eng/mzm/v21/i3/p377
This publication is cited in the following 3 articles:
S. T. Gataullin, T. M. Gataullin, “To the Problem of a Point Source in an Inhomogeneous Medium”, Math. Notes, 114:6 (2023), 1212–1216
Timur M. Gataullin, Sergey T. Gataullin, Ksenia V. Ivanova, Lecture Notes in Networks and Systems, 155, “Smart Technologies” for Society, State and Economy, 2021, 1108
S. G. Pyatkov, L. V. Neustroeva, “On some asymptotic representations of solutions to elliptic equations and their applications”, Complex Variables and Elliptic Equations, 66:6-7 (2021), 964