Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 3, Pages 297–300 (Mi mzm7957)  

Topological groups with invariant centralizers of elements

B. A. Kramarev

Voroshilovgrad Pedagogical Institute
Abstract: We consider topological groups in which the centralizer of any element is invariant. We prove that these and only these groups are 2-Engel groups.
Received: 13.03.1976
English version:
Mathematical Notes, 1977, Volume 21, Issue 3, Pages 165–167
DOI: https://doi.org/10.1007/BF01106738
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: B. A. Kramarev, “Topological groups with invariant centralizers of elements”, Mat. Zametki, 21:3 (1977), 297–300; Math. Notes, 21:3 (1977), 165–167
Citation in format AMSBIB
\Bibitem{Kra77}
\by B.~A.~Kramarev
\paper Topological groups with invariant centralizers of elements
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 3
\pages 297--300
\mathnet{http://mi.mathnet.ru/mzm7957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=439977}
\zmath{https://zbmath.org/?q=an:0403.22002|0348.22003}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 3
\pages 165--167
\crossref{https://doi.org/10.1007/BF01106738}
Linking options:
  • https://www.mathnet.ru/eng/mzm7957
  • https://www.mathnet.ru/eng/mzm/v21/i3/p297
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025