Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 3, Pages 289–296 (Mi mzm7956)  

This article is cited in 1 scientific paper (total in 1 paper)

Algebraic integers with discriminants containing fixed prime divisors

L. A. Trelina

Institute of Mathematics, Academy of Sciences Byelorussian SSR
Full-text PDF (508 kB) Citations (1)
Abstract: It is proved that any algebraic integer $\alpha$ of degree $n\ge2$ whose discriminant is a product of powers of prescribed primes $p_1,\dots,p_r$ has the form $\alpha=a+\beta p_1^{v_1}\dotsp_r^{v_r}$, where $\alpha,v_1,\dots,v_r$ are rational integers and $\beta$ is an integer whose height does not exceed an effectively defined bound depending $\max(p1,\dots,p_r)$, $r$, and $n$.
Received: 29.06.1976
English version:
Mathematical Notes, 1977, Volume 21, Issue 3, Pages 161–165
DOI: https://doi.org/10.1007/BF01106737
Bibliographic databases:
UDC: 511
Language: Russian
Citation: L. A. Trelina, “Algebraic integers with discriminants containing fixed prime divisors”, Mat. Zametki, 21:3 (1977), 289–296; Math. Notes, 21:3 (1977), 161–165
Citation in format AMSBIB
\Bibitem{Tre77}
\by L.~A.~Trelina
\paper Algebraic integers with discriminants containing fixed prime divisors
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 3
\pages 289--296
\mathnet{http://mi.mathnet.ru/mzm7956}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=439800}
\zmath{https://zbmath.org/?q=an:0401.12001|0356.12008}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 3
\pages 161--165
\crossref{https://doi.org/10.1007/BF01106737}
Linking options:
  • https://www.mathnet.ru/eng/mzm7956
  • https://www.mathnet.ru/eng/mzm/v21/i3/p289
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025