Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 6, Pages 877–894
DOI: https://doi.org/10.4213/mzm78
(Mi mzm78)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Concentration Function of Additive Functions with Nonmultiplicative Weight

N. M. Timofeev, M. B. Khripunova

Vladimir State Pedagogical University
Full-text PDF (273 kB) Citations (1)
References:
Abstract: Suppose that $g(n)$ is a real-valued additive function and $\tau(n)$ is the number of divisors of $n$. In this paper, we prove that there exists a constant $C$ such that
$$ \sup_a\sum_{\substack n<N\\g(n)\in[a,a+1)} \tau(N-n) \le C\frac{N\,\log N}{\sqrt{W(N)}}, $$
where
$$ W(N) =4+\min_\lambda\biggl(\lambda^2 +\sum_{p<N} \frac1p\min\bigl(1,(g(p)-\lambda\log p)^2\bigr)\biggr). $$
In particular, it follows from this result that
$$ \sup_a\bigl|\bigl\{m,n:mn<N,\;g(N-mn)=a\bigr\}\bigr| \ll N\,\log N\, \biggl(\sum_{p<N,\,g(p)\ne0}(1/p)\biggr)^{-1/2}. $$
The implicit constant is absolute.
Received: 16.08.2000
Revised: 10.11.2002
English version:
Mathematical Notes, 2004, Volume 75, Issue 6, Pages 819–835
DOI: https://doi.org/10.1023/B:MATN.0000030991.37899.cc
Bibliographic databases:
UDC: 511
Language: Russian
Citation: N. M. Timofeev, M. B. Khripunova, “The Concentration Function of Additive Functions with Nonmultiplicative Weight”, Mat. Zametki, 75:6 (2004), 877–894; Math. Notes, 75:6 (2004), 819–835
Citation in format AMSBIB
\Bibitem{TimKhr04}
\by N.~M.~Timofeev, M.~B.~Khripunova
\paper The Concentration Function of Additive Functions with Nonmultiplicative Weight
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 6
\pages 877--894
\mathnet{http://mi.mathnet.ru/mzm78}
\crossref{https://doi.org/10.4213/mzm78}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085814}
\zmath{https://zbmath.org/?q=an:1067.11059}
\elib{https://elibrary.ru/item.asp?id=6618291}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 6
\pages 819--835
\crossref{https://doi.org/10.1023/B:MATN.0000030991.37899.cc}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400025}
Linking options:
  • https://www.mathnet.ru/eng/mzm78
  • https://doi.org/10.4213/mzm78
  • https://www.mathnet.ru/eng/mzm/v75/i6/p877
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024