|
Modules over Endomorphism Rings
A. A. Tuganbaev Moscow Power Engineering Institute (Technical University)
Abstract:
It is proved that $A$ is a right distributive ring if and only if all quasiinjective right $A$-modules are Bezout left modules over their endomorphism rings if and only if for any quasiinjective right $A$-module $M$ which is a Bezout left $\operatorname{End}(M)$-module, every direct summand $N$ of $M$ is a Bezout $\operatorname{End}(M)$-module. If $A$ is a right or left perfect ring, then all right $A$-modules are Bezout left modules over their endomorphism rings if and only if all right $A$-modules are distributive left modules over their endomorphism rings if and only if $A$ is a distributive ring.
Received: 20.12.2001
Citation:
A. A. Tuganbaev, “Modules over Endomorphism Rings”, Mat. Zametki, 75:6 (2004), 895–908; Math. Notes, 75:6 (2004), 836–847
Linking options:
https://www.mathnet.ru/eng/mzm79https://doi.org/10.4213/mzm79 https://www.mathnet.ru/eng/mzm/v75/i6/p895
|
Statistics & downloads: |
Abstract page: | 486 | Full-text PDF : | 207 | References: | 77 | First page: | 4 |
|